TY - JOUR
T1 - Rat Hair Metabolomics Analysis Reveals Perturbations of Unsaturated Fatty Acid Biosynthesis, Phenylalanine, and Arachidonic Acid Metabolism Pathways Are Associated with Amyloid-β-Induced Cognitive Deficits
AU - Tan, Tian Hoe
AU - Li, Shih Wen
AU - Chang, Chih Wei
AU - Chen, Yuan Chih
AU - Liu, Yu Hsuan
AU - Ma, Jui Ti
AU - Chang, Ching Ping
AU - Liao, Pao Chi
N1 - Funding Information:
This work was supported by the Ministry of Science and Technology, Taiwan (grant number MOST109-2113-M-006–015, MOST110-2113-M-006–014, and MOST111-2113-M-006–011) and Chi Mei Medical Center, Taiwan (grant number CMNCKU 11013 and CMFHR11117).
Funding Information:
The authors gratefully acknowledge the use of ICP00401 and MS004000 equipment belonging to the Core Facility Center of National Cheng Kung University and the National Taiwan University Consortia of Key Technologies, National Taiwan University Instrumentation center, and the Metabolomics Core Facility, Scientific Instrument Center at Academia Sinica.
Publisher Copyright:
© 2023, The Author(s).
PY - 2023/8
Y1 - 2023/8
N2 - Hair is a noninvasive valuable biospecimen for the long-term assessment of endogenous metabolic disturbance. Whether the hair is suitable for identifying biomarkers of the Alzheimer’s disease (AD) process remains unknown. We aim to investigate the metabolism changes in hair after β-amyloid (Aβ1-42) exposure in rats using ultra-high-performance liquid chromatography-high-resolution mass spectrometry–based untargeted and targeted methods. Thirty-five days after Aβ1-42 induction, rats displayed significant cognitive deficits, and forty metabolites were changed, of which twenty belonged to three perturbed pathways: (1) phenylalanine metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis—l-phenylalanine, phenylpyruvate, ortho-hydroxyphenylacetic acid, and phenyllactic acid are up-regulated; (2) arachidonic acid (ARA) metabolism—leukotriene B4 (LTB4), arachidonyl carnitine, and 5(S)-HPETE are upregulation, but ARA, 14,15-DiHETrE, 5(S)-HETE, and PGB2 are opposite; and (3) unsaturated fatty acid biosynthesis— eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), FA 18:3 + 1O, and FA 18:3 + 2O are downregulated. Linoleic acid metabolism belonging to the biosynthesis of unsaturated fatty acid includes the upregulation of 8-hydroxy-9,10-epoxystearic acid, 13-oxoODE, and FA 18:2 + 4O, and downregulation of 9(S)-HPODE and dihomo-γ-linolenic acid. In addition, cortisone and dehydroepiandrosterone belonging to steroid hormone biosynthesis are upregulated. These three perturbed metabolic pathways also correlate with cognitive impairment after Aβ1-42 stimulation. Furthermore, ARA, DHA, EPA, l-phenylalanine, and cortisone have been previously implicated in the cerebrospinal fluid of AD patients and show a similar changing trend in Aβ1-42 rats’ hair. These data suggest hair can be a useful biospecimen that well reflects the expression of non-polar molecules under Aβ1-42 stimulation, and the five metabolites have the potential to serve as novel AD biomarkers.
AB - Hair is a noninvasive valuable biospecimen for the long-term assessment of endogenous metabolic disturbance. Whether the hair is suitable for identifying biomarkers of the Alzheimer’s disease (AD) process remains unknown. We aim to investigate the metabolism changes in hair after β-amyloid (Aβ1-42) exposure in rats using ultra-high-performance liquid chromatography-high-resolution mass spectrometry–based untargeted and targeted methods. Thirty-five days after Aβ1-42 induction, rats displayed significant cognitive deficits, and forty metabolites were changed, of which twenty belonged to three perturbed pathways: (1) phenylalanine metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis—l-phenylalanine, phenylpyruvate, ortho-hydroxyphenylacetic acid, and phenyllactic acid are up-regulated; (2) arachidonic acid (ARA) metabolism—leukotriene B4 (LTB4), arachidonyl carnitine, and 5(S)-HPETE are upregulation, but ARA, 14,15-DiHETrE, 5(S)-HETE, and PGB2 are opposite; and (3) unsaturated fatty acid biosynthesis— eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), FA 18:3 + 1O, and FA 18:3 + 2O are downregulated. Linoleic acid metabolism belonging to the biosynthesis of unsaturated fatty acid includes the upregulation of 8-hydroxy-9,10-epoxystearic acid, 13-oxoODE, and FA 18:2 + 4O, and downregulation of 9(S)-HPODE and dihomo-γ-linolenic acid. In addition, cortisone and dehydroepiandrosterone belonging to steroid hormone biosynthesis are upregulated. These three perturbed metabolic pathways also correlate with cognitive impairment after Aβ1-42 stimulation. Furthermore, ARA, DHA, EPA, l-phenylalanine, and cortisone have been previously implicated in the cerebrospinal fluid of AD patients and show a similar changing trend in Aβ1-42 rats’ hair. These data suggest hair can be a useful biospecimen that well reflects the expression of non-polar molecules under Aβ1-42 stimulation, and the five metabolites have the potential to serve as novel AD biomarkers.
UR - http://www.scopus.com/inward/record.url?scp=85153387406&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85153387406&partnerID=8YFLogxK
U2 - 10.1007/s12035-023-03343-6
DO - 10.1007/s12035-023-03343-6
M3 - Article
C2 - 37095368
AN - SCOPUS:85153387406
SN - 0893-7648
VL - 60
SP - 4373
EP - 4395
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 8
ER -