TY - JOUR
T1 - Reaction pathways of 2-iodoacetic acid on Cu(100)
T2 - Coverage-dependent competition between C-I bond scission and COOH deprotonation and identification of surface intermediates
AU - Lin, Yi Shiue
AU - Lin, Jain Shiun
AU - Liao, Yung Hsuan
AU - Yang, Che Ming
AU - Kuo, Che Wei
AU - Lin, Hong-Ping
AU - Fan, Liang Jen
AU - Yang, Yaw Wen
AU - Lin, Jong-Liang
PY - 2010/6/1
Y1 - 2010/6/1
N2 - The chemistry of 2-iodoacetic acid on Cu(100) has been studied by a combination of reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reaction/desorption (TPR/D), and theoretical calculations based on density functional theory for the optimized intermediate structures. In the thermal decomposition of ICH 2COOH on Cu(100) with a coverage less than a half monolayer, three surface intermediates, CH2COO, CH3COO, and CCOH, are generated and characterized spectroscopically. Based on their different thermal stabilities, the reaction pathways of ICH2COOH on Cu(100) at temperatures higher than 230 K are established to be ICH2COOH → CH2COO + H + I, CH2COO + H → CH3COO, and CH3COO → CCOH. Theoretical calculations suggest that the surface CH2COO has the skeletal plane, with delocalized π electrons, approximately parallel to the surface. The calculated Mulliken charges agree with the detected binding energies for the two carbon atoms in CH2COO on Cu(100). The CCOH derived from CH3COO decomposition has a CC stretching frequency at 2025 cm-1, reflecting its triple-bond character which is consistent with the calculated CCOH structure on Cu(100). Theoretically, CCOH at the bridge and hollow sites has a similar stability and is adsorbed with the molecular axis approximately perpendicular to the surface. The TPR/D study has shown the evolution of the products of H2, CH4, H2O, CO, CO2, CH2CO, and CH3COOH from CH3COO decomposition between 500 and 600 K and the formation of H2 and CO from CCOH between 600 and 700 K. However, at a coverage near one monolayer, the major species formed at 230 and 320 K are proposed to be ICH2COO and CH3COO. CH 3COO becomes the only species present on the surface at 400 K. That is, there are two reaction pathways of ICH2COOH → ICH 2COO + H and ICH2COO + H → CH3COO + I (possibly via CH2COO), which are different from those observed at lower coverages. Because the C-I bond dissociation of iodoethane on copper single crystal surfaces occurs at ∼120 K and that the deprotonation of CH3COOH on Cu(100) occurs at ∼220 K, the preferential COOH dehydrogenation of monolayer ICH2COOH is an interesting result, possibly due to electronic and/or steric effects.
AB - The chemistry of 2-iodoacetic acid on Cu(100) has been studied by a combination of reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reaction/desorption (TPR/D), and theoretical calculations based on density functional theory for the optimized intermediate structures. In the thermal decomposition of ICH 2COOH on Cu(100) with a coverage less than a half monolayer, three surface intermediates, CH2COO, CH3COO, and CCOH, are generated and characterized spectroscopically. Based on their different thermal stabilities, the reaction pathways of ICH2COOH on Cu(100) at temperatures higher than 230 K are established to be ICH2COOH → CH2COO + H + I, CH2COO + H → CH3COO, and CH3COO → CCOH. Theoretical calculations suggest that the surface CH2COO has the skeletal plane, with delocalized π electrons, approximately parallel to the surface. The calculated Mulliken charges agree with the detected binding energies for the two carbon atoms in CH2COO on Cu(100). The CCOH derived from CH3COO decomposition has a CC stretching frequency at 2025 cm-1, reflecting its triple-bond character which is consistent with the calculated CCOH structure on Cu(100). Theoretically, CCOH at the bridge and hollow sites has a similar stability and is adsorbed with the molecular axis approximately perpendicular to the surface. The TPR/D study has shown the evolution of the products of H2, CH4, H2O, CO, CO2, CH2CO, and CH3COOH from CH3COO decomposition between 500 and 600 K and the formation of H2 and CO from CCOH between 600 and 700 K. However, at a coverage near one monolayer, the major species formed at 230 and 320 K are proposed to be ICH2COO and CH3COO. CH 3COO becomes the only species present on the surface at 400 K. That is, there are two reaction pathways of ICH2COOH → ICH 2COO + H and ICH2COO + H → CH3COO + I (possibly via CH2COO), which are different from those observed at lower coverages. Because the C-I bond dissociation of iodoethane on copper single crystal surfaces occurs at ∼120 K and that the deprotonation of CH3COOH on Cu(100) occurs at ∼220 K, the preferential COOH dehydrogenation of monolayer ICH2COOH is an interesting result, possibly due to electronic and/or steric effects.
UR - http://www.scopus.com/inward/record.url?scp=77952870992&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952870992&partnerID=8YFLogxK
U2 - 10.1021/la904576z
DO - 10.1021/la904576z
M3 - Article
C2 - 20356026
AN - SCOPUS:77952870992
SN - 0743-7463
VL - 26
SP - 8218
EP - 8225
JO - Langmuir
JF - Langmuir
IS - 11
ER -