Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence

I. Ching Tsai, Zih cian Pan, Hui Pin Cheng, Chen Hsiu Liu, Bor Tyng Lin, Meei Jyh Jiang

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Cellular senescence has emerged as an important player in both physiology and pathology. Excessive reactive oxygen species (ROS) is known to mediate cellular senescence. NADPH oxidases are major sources for ROS production in the vascular wall; the roles of different NADPH oxidase isoforms in cellular senescence remain unclear, however. We investigated the roles of two NADPH oxidase isoforms in mitochondrial dysfunction during angiotensin II (Ang II)-induced cellular senescence of human aortic vascular smooth muscle cells (VSMCs). Ang II (10− 7 M) stimulated ROS generation, exhibiting early increases between 30 and 60 min and sustained increases between 24 h and 72 h, and induced VSMCs senescence after 48 h or 72 h treatment as assessed with senescence-associated β-galactosidase activity and the expression of two cell cycle inhibitors, p21 and p16. ROS scavengers and membrane-permeable catalase (catalase-PEG) reduced Ang II-stimulated cellular senescence. Furthermore, small interfering RNA (siRNA) of NADPH oxidase catalytic subunit Nox1, but not that of another isoform Nox4, inhibited Ang II-induced cellular senescence. Nox1 siRNA inhibited both early and sustained ROS increases induced by Ang II. In addition, a mitochondrial-specific antioxidant, mitoQ10, effectively inhibited Ang II-induced ROS increases and cellular senescence. Ang II decreased ATP synthesis and induced mitochondrial membrane depolarization, which were attenuated by pre-treating cells with Nox1 siRNA, mitoQ10 or catalase-PEG. The effect of Ang II on the mitochondrial regulator peroxisome-proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its downstream genes was examined. Ang II stimulated S570 phosphorylation of PGC-1α with concomitant decreases in catalase and uncoupling protein-2 (UCP-2) levels between 12 h and 72 h, which were inhibited by Nox1 siRNA. Knockdown of both catalase and UCP-2 mimicked Ang II-induced VSMC senescence. These results suggested that Ang II-stimulated Nox1 activation mediates mitochondrial dysfunction, probably by decreasing PGC-1α activity and increasing mitochondrial oxidative stress, and leads to cellular senescence of VSMCs.

Original languageEnglish
Pages (from-to)18-27
Number of pages10
JournalJournal of Molecular and Cellular Cardiology
Volume98
DOIs
Publication statusPublished - 2016 Sep 1

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence'. Together they form a unique fingerprint.

Cite this