Abstract
Probabilistic flood forecasting, which provides uncertain information in the forecasting of floods, is practical and informative for implementing flood-mitigation countermeasures. This study adopted various machine learning methods, including support vector regression (SVR), a fuzzy inference model (FIM), and the k-nearest neighbors (k-NN) method, to establish a probabilistic forecasting model. The probabilistic forecasting method is a combination of a deterministic forecast produced using SVR and a probability distribution of forecast errors determined by the FIM and k-NN method. This study proposed an FIM with a modified defuzzification scheme to transform the FIM's output into a probability distribution, and k-NN was employed to refine the probability distribution. The probabilistic forecasting model was applied to forecast flash floods with lead times of 1-3 hours in Yilan River, Taiwan. Validation results revealed the deterministic forecasting to be accurate, and the probabilistic forecasting was promising in view of a forecasted hydrograph and quantitative assessment concerning the confidence level.
Original language | English |
---|---|
Article number | 787 |
Journal | Water (Switzerland) |
Volume | 12 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2020 Mar 1 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Geography, Planning and Development
- Aquatic Science
- Water Science and Technology