Real value prediction of protein solvent accessibility using enhanced PSSM features

Darby Tien Hao Chang, Hsuan Yu Huang, Yu Tang Syu, Chih Peng Wu

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Background: Prediction of protein solvent accessibility, also called accessible surface area (ASA) prediction, is an important step for tertiary structure prediction directly from one-dimensional sequences. Traditionally, predicting solvent accessibility is regarded as either a two- (exposed or buried) or three-state (exposed, intermediate or buried) classification problem. However, the states of solvent accessibility are not well-defined in real protein structures. Thus, a number of methods have been developed to directly predict the real value ASA based on evolutionary information such as position specific scoring matrix (PSSM). Results: This study enhances the PSSM-based features forreal value ASA prediction by considering the physicochemical properties and solvent propensities of amino acid types. We propose a systematic method for identifying residue groups with respect to protein solvent accessibility. The amino acid columns in the PSSM profile that belong to a certain residue group are merged to generate novel features. Finally, support vector regression (SVR) is adopted to construct a real value ASA predictor. Experimental results demonstrate that the features produced by the proposed selection process are informative for ASA prediction. Conclusion: Experimental results based on a widely used benchmark reveal that the proposed method performs best among several of existing packages for performing ASA prediction. Furthermore, the feature selection mechanism incorporated in this study can be applied to other regression problems using the PSSM. The program and data are available from the authors upon request.

Original languageEnglish
Article numberS12
JournalBMC Bioinformatics
Volume9
Issue numberSUPPL. 12
DOIs
Publication statusPublished - 2008 Dec 12

All Science Journal Classification (ASJC) codes

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Real value prediction of protein solvent accessibility using enhanced PSSM features'. Together they form a unique fingerprint.

Cite this