Regional-pole placement of linear multivariable systems via an alternative root-locus technique

Shy Jen Guo, Cheng Chieh Hung, Jason S.H. Tsai

Research output: Contribution to journalArticlepeer-review

Abstract

An alternative design of the asymptotic behaviour of the root-loci of linear, time-invariant, multivariable, feedback system is presented via the dyadic output-feedback approach. Based on the proposed dyadic output-feedback approach, one cannotonly manipulate multi-input-multi-output (MIMO) systems as pseudo-scalar systems but also achieve both the zero assignment and pole assignment of the pseudo-scalar systems. The prespecified zeros will play the role of artificial finite zeros of the root-loci of MIMO feedback systems to attract asymptotic poles, and the output-feedback control law which enables the graphical estimation of the closed-loop poles of MIMO system can also be determined. Moreover, the proposed control law preserves desired system poles and relocates undesirable poles such that the control effort will be significantly improved.

Original languageEnglish
Pages (from-to)23-33
Number of pages11
JournalJournal of the Franklin Institute
Volume331
Issue number1
DOIs
Publication statusPublished - 1994 Jan

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Signal Processing
  • Computer Networks and Communications
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Regional-pole placement of linear multivariable systems via an alternative root-locus technique'. Together they form a unique fingerprint.

Cite this