TY - JOUR
T1 - Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT 1 and Mas receptors to modulate central blood pressure control in the nucleus tractus solitarii
AU - Cheng, Wen Han
AU - Lu, Pei Jung
AU - Hsiao, Michael
AU - Hsiao, Chun Hui
AU - Ho, Wen Yu
AU - Cheng, Pei Wen
AU - Lin, Chia Te
AU - Hong, Ling Zong
AU - Tseng, Ching Jiunn
PY - 2012/8
Y1 - 2012/8
N2 - BACKGROUND AND PURPOSE The renin-angiotensin system (RAS) is critical for the control of blood pressure by the CNS. Recently, direct renin inhibitors were approved as antihypertensive agents. However, the signalling mechanism of renin, which regulates blood pressure in the nucleus tractus solitarii (NTS) remains unclear. Here we have investigated the signalling pathways involved in renin-mediated blood pressure regulation, at the NTS. EXPERIMENTAL APPROACH Depressor responses to renin microinjected into the NTS of Wistar-Kyoto rats were elicited in the absence and presence of the endothelial nitric oxide synthase (eNOS)-specific inhibitor, N(5)-(-iminoethyl)-L-ornithine, Akt inhibitor IV and LY294002, a PI3K inhibitor and GP antagonist-2A [Gq inhibitor]. Lisinopril (angiotensin converting enzyme inhibitor), losartan, valsartan (angiotensin AT1 receptor antagonists), D-Ala7-Ang-(1-7) (angiotensin-(1-7) receptor antagonist) were used to study the involvement of RAS on renin-induced depressor effects. KEY RESULTS Microinjection of renin into the NTS produced a prominent depressor effect and increased NO production. Pretreatment with Gq-PI3K-Akt-eNOS pathway-specific inhibitors significantly attenuated the depressor response evoked by renin. Immunoblotting and immunohistochemical studies further showed that inhibition of PI3K significantly blocked renin-induced eNOS-Ser117 and Akt-Ser 473 phosphorylation in situ. In addition, pre-treatment of the NTS with RAS inhibitors attenuated the vasodepressor effects evoked by renin. Microinjection of renin also increased Ras activation in the NTS. CONCLUSIONS AND IMPLICATIONS Taken together, these results suggest renin modulated blood pressure at the NTS by AT1 and Mas receptor-mediated activation of Gq and Ras to evoke PI3K-Akt-eNOS signalling.
AB - BACKGROUND AND PURPOSE The renin-angiotensin system (RAS) is critical for the control of blood pressure by the CNS. Recently, direct renin inhibitors were approved as antihypertensive agents. However, the signalling mechanism of renin, which regulates blood pressure in the nucleus tractus solitarii (NTS) remains unclear. Here we have investigated the signalling pathways involved in renin-mediated blood pressure regulation, at the NTS. EXPERIMENTAL APPROACH Depressor responses to renin microinjected into the NTS of Wistar-Kyoto rats were elicited in the absence and presence of the endothelial nitric oxide synthase (eNOS)-specific inhibitor, N(5)-(-iminoethyl)-L-ornithine, Akt inhibitor IV and LY294002, a PI3K inhibitor and GP antagonist-2A [Gq inhibitor]. Lisinopril (angiotensin converting enzyme inhibitor), losartan, valsartan (angiotensin AT1 receptor antagonists), D-Ala7-Ang-(1-7) (angiotensin-(1-7) receptor antagonist) were used to study the involvement of RAS on renin-induced depressor effects. KEY RESULTS Microinjection of renin into the NTS produced a prominent depressor effect and increased NO production. Pretreatment with Gq-PI3K-Akt-eNOS pathway-specific inhibitors significantly attenuated the depressor response evoked by renin. Immunoblotting and immunohistochemical studies further showed that inhibition of PI3K significantly blocked renin-induced eNOS-Ser117 and Akt-Ser 473 phosphorylation in situ. In addition, pre-treatment of the NTS with RAS inhibitors attenuated the vasodepressor effects evoked by renin. Microinjection of renin also increased Ras activation in the NTS. CONCLUSIONS AND IMPLICATIONS Taken together, these results suggest renin modulated blood pressure at the NTS by AT1 and Mas receptor-mediated activation of Gq and Ras to evoke PI3K-Akt-eNOS signalling.
UR - http://www.scopus.com/inward/record.url?scp=84863707860&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863707860&partnerID=8YFLogxK
U2 - 10.1111/j.1476-5381.2012.01832.x
DO - 10.1111/j.1476-5381.2012.01832.x
M3 - Article
C2 - 22224457
AN - SCOPUS:84863707860
SN - 0007-1188
VL - 166
SP - 2024
EP - 2035
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 7
ER -