Rheological characteristics for thin film elastohy-drodynamic lubrication with non-newtonian lubricants

H. M. Chu, Y. P. Chang, W. L. Li

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The modified Reynolds equation for power law fluid is derived from the viscous adsorption theory for thin film elastohydrodynamic lubrication (TFEHL). The differences between classical non-Newtonian EHL and non-Newtonian TFEHL are discussed. Results show that the proposed model can reasonably calculate the pressure distribution, the film thickness, the velocity distribution and the average viscosity under thin film lubrication. The thickness (δ), the viscosity (W1), and the flow index (n1) of the adsorption layer influence significantly the lubrication characteristics of the contact conjunction. Furthermore, the film thickness increases with the increase of n1, and the film thickness affected by m1 is greater than that affected by n1, but the effect of n1 produces a very small difference in the pressure distributions. In addition, the greater n 1, the smaller the change of velocity distribution in the adsorption layer, and the greater the change of velocity distribution in the middle layer. The larger δ and n1, the larger the deviation on log (film thickness) vs. log (speed) produced in the very thin film regime. In the region of the flow index ratio between 1.0 and 1.3, the difference in film thickness is significant. When the flow index of the adsorption layer is 1.6 times greater than the flow index of the middle layer, the adsorption layer is generally looked upon as a "solid-like".

Original languageEnglish
Pages (from-to)359-366
Number of pages8
JournalJournal of Mechanics
Volume23
Issue number4
DOIs
Publication statusPublished - 2007 Dec

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanical Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Rheological characteristics for thin film elastohy-drodynamic lubrication with non-newtonian lubricants'. Together they form a unique fingerprint.

Cite this