Rinsing effects on successive ionic layer adsorption and reaction method for deposition of ZnO thin films

Shih Chang Shei, Shoou Jinn Chang, Pay Yu Lee

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

This study investigates different rinsing processes using a successive ionic layer adsorption and reaction (SILAR) method to deposit ZnO thin films. Rinsing in ultrasonic-assisted deionized (DI) water reveals thin films with better adsorptive attraction compared with a traditional SILAR method because the former can remove the loosely attached ZnO and unreacted Zn (OH)2 grains. In this case, the ZnO films appear as large pellets and white particles with low transparency. The structure and transparency of ZnO thin films can be significantly improved by using ultrasonic irradiation and rinsing in ethylene glycol rather than rinsing in DI water. The obtained ZnO films exhibited were more smooth, compact, and diaphanous, and the transparencies of ZnO films reached as high as 90% in the visible-light wavelength region. Furthermore, when the rinsing temperature of ethylene glycol was increased from 95 to 125°C, the ZnO films appeared to have finer grain size, higher transparency, and lower oxygen vacancies. Mechanism analysis indicated that the ethylene glycol acts as a dispersing agent to reduce ZnO agglomeration and the higher rinsing temperature enhances the decomposition capability of Zn (OH)2.

Original languageEnglish
Pages (from-to)H208-H213
JournalJournal of the Electrochemical Society
Volume158
Issue number3
DOIs
Publication statusPublished - 2011 Feb 8

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Rinsing effects on successive ionic layer adsorption and reaction method for deposition of ZnO thin films'. Together they form a unique fingerprint.

  • Cite this