Abstract
In this article, a robust resilient design methodology for stabilization and tracking control for a class of chaotic dynamical systems is proposed. In particular, a resilient quasi-sliding mode control law is formulated to suppress the chaotic behaviour of these dynamical systems, while considering uncertainties in control input. By using Lyapunov stability theory, sufficient conditions are derived in terms of Linear Matrix Inequalities (LMIs) for a more general class of chaotic nonlinear dynamical systems satisfying the Lipschitz continuity condition. The control gains are obtained via LMI technique in the presence of bounded additive uncertainties in control input. Numerical simulations are provided for Chua’s circuit, Lorenz system, and 4D Lü hyper-chaotic system to show the supremacy and effectiveness of the proposed design methodologies.
Original language | English |
---|---|
Pages (from-to) | 1746-1756 |
Number of pages | 11 |
Journal | International Journal of Dynamics and Control |
Volume | 9 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2021 Dec |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Civil and Structural Engineering
- Modelling and Simulation
- Mechanical Engineering
- Control and Optimization
- Electrical and Electronic Engineering