Abstract
How to design a robust gene network to tolerate more intrinsic kinetic parameter variations and to attenuate more extrinsic environmental noises to achieve a desired filtering level will be an important topic for systems biology and synthetic biology. At present, there is no good systematic design method to achieve robust gene network design. In this study, a gene network suffering from intrinsic kinetic parameter fluctuations and extrinsic environmental noises is modeled as a Langevin equation with state-dependent stochastic noises. Based on the nonlinear stochastic filtering theory, a systematic gene circuit design method is proposed to make gene networks improve their robustness to tolerate more intrinsic noises and to attenuate extrinsic noises to a prescribed filtering level. The robust gene network design principles have not only yielded a comprehensive design theory of robust gene networks, but also gained valuable insights into the molecular noise filtering of gene networks from the systematic perspective.
Original language | English |
---|---|
Pages (from-to) | 342-355 |
Number of pages | 14 |
Journal | Mathematical Biosciences |
Volume | 211 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2008 Feb |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Modelling and Simulation
- General Biochemistry,Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Applied Mathematics