TY - JOUR
T1 - Role of WW Domain-Containing oxidoreductase WWOX in driving T cell acute lymphoblastic leukemia maturation
AU - Huang, Shenq Shyang
AU - Su, Wan Pei
AU - Lin, Hsin Pin
AU - Kuo, Hsiang Ling
AU - Wei, Hsiao Ling
AU - Chang, Nan Shan
N1 - Publisher Copyright:
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2016/8/12
Y1 - 2016/8/12
N2 - Whether tumor suppressor WWOX (WW domain-containing oxidoreductase) stimulates immune cell maturation is largely unknown. Here, we determined that Tyr-33-phosphorylated WWOX physically binds non-phosphorylated ERK and IκBα in immature acute lymphoblastic leukemia MOLT-4 T cells and in the naïve mouse spleen. The IκBαERK• WWOX complex was shown to localize, in part, in the mitochondria. WWOX prevents Iκ Bα from proteasomal degradation. Upon stimulating MOLT-4 with ionophore A23187/phorbol myristate acetate, endogenous Iκ Bα and ERK undergo rapid phosphorylation in <5 min, and subsequently WWOX is Tyr-33 and Tyr-287 de-phosphorylated and Ser-14 phosphorylated. Three hours later, Iκ Bα starts to degrade, and ERK returns to basal or non-phosphorylation, and this lasts for the next 12 h. Finally, expression of CD3 and CD8 occurs in MOLT-4 along with reappearance of the Iκ Bα ERK• WWOX complex near 24 h. Inhibition of ERK phosphorylation by U0126 or IκBα degradation by MG132 prevents MOLT-4 maturation. By time-lapse FRET microscopy, Iκ Bα•ERK•WWOX complex exhibits an increased binding strength by 1-2-fold after exposure to ionophore A23187/phorbol myristate acetate for 15-24 h. Meanwhile, a portion of ERK and WWOX relocates to the nucleus, suggesting their role in the induction of CD3 and CD8 expression in MOLT-4.
AB - Whether tumor suppressor WWOX (WW domain-containing oxidoreductase) stimulates immune cell maturation is largely unknown. Here, we determined that Tyr-33-phosphorylated WWOX physically binds non-phosphorylated ERK and IκBα in immature acute lymphoblastic leukemia MOLT-4 T cells and in the naïve mouse spleen. The IκBαERK• WWOX complex was shown to localize, in part, in the mitochondria. WWOX prevents Iκ Bα from proteasomal degradation. Upon stimulating MOLT-4 with ionophore A23187/phorbol myristate acetate, endogenous Iκ Bα and ERK undergo rapid phosphorylation in <5 min, and subsequently WWOX is Tyr-33 and Tyr-287 de-phosphorylated and Ser-14 phosphorylated. Three hours later, Iκ Bα starts to degrade, and ERK returns to basal or non-phosphorylation, and this lasts for the next 12 h. Finally, expression of CD3 and CD8 occurs in MOLT-4 along with reappearance of the Iκ Bα ERK• WWOX complex near 24 h. Inhibition of ERK phosphorylation by U0126 or IκBα degradation by MG132 prevents MOLT-4 maturation. By time-lapse FRET microscopy, Iκ Bα•ERK•WWOX complex exhibits an increased binding strength by 1-2-fold after exposure to ionophore A23187/phorbol myristate acetate for 15-24 h. Meanwhile, a portion of ERK and WWOX relocates to the nucleus, suggesting their role in the induction of CD3 and CD8 expression in MOLT-4.
UR - http://www.scopus.com/inward/record.url?scp=84982098305&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982098305&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.716167
DO - 10.1074/jbc.M116.716167
M3 - Article
C2 - 27339895
AN - SCOPUS:84982098305
SN - 0021-9258
VL - 291
SP - 17319
EP - 17331
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 33
ER -