Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films

Xiaoqian Zhang, Qiangsheng Lu, Wenqing Liu, Wei Niu, Jiabao Sun, Jacob Cook, Mitchel Vaninger, Paul F. Miceli, David J. Singh, Shang Wei Lian, Tay Rong Chang, Xiaoqing He, Jun Du, Liang He, Rong Zhang, Guang Bian, Yongbing Xu

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)


While the discovery of two-dimensional (2D) magnets opens the door for fundamental physics and next-generation spintronics, it is technically challenging to achieve the room-temperature ferromagnetic (FM) order in a way compatible with potential device applications. Here, we report the growth and properties of single- and few-layer CrTe2, a van der Waals (vdW) material, on bilayer graphene by molecular beam epitaxy (MBE). Intrinsic ferromagnetism with a Curie temperature (TC) up to 300 K, an atomic magnetic moment of ~0.21 μB/Cr and perpendicular magnetic anisotropy (PMA) constant (Ku) of 4.89 × 105 erg/cm3 at room temperature in these few-monolayer films have been unambiguously evidenced by superconducting quantum interference device and X-ray magnetic circular dichroism. This intrinsic ferromagnetism has also been identified by the splitting of majority and minority band dispersions with ~0.2 eV at Г point using angle-resolved photoemission spectroscopy. The FM order is preserved with the film thickness down to a monolayer (TC ~ 200 K), benefiting from the strong PMA and weak interlayer coupling. The successful MBE growth of 2D FM CrTe2 films with room-temperature ferromagnetism opens a new avenue for developing large-scale 2D magnet-based spintronics devices.

Original languageEnglish
Article number2492
JournalNature communications
Issue number1
Publication statusPublished - 2021 Dec

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films'. Together they form a unique fingerprint.

Cite this