Salinity-driven nitrogen removal and its quantitative molecular mechanisms in artificial tidal wetlands

Manping Zhang, Zi Jing Wang, Jung Chen Huang, Shanshan Sun, Xijun Cui, Weili Zhou, Shengbing He

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)

Abstract

The present study investigated the performance in nitrogen removal and associated nitrogen transformation processes in seven mesocosms fed with saline water (0‰ to 30‰) to simulate tidal flow constructed wetlands (TF CWs). The highly effective and steady removal of NH4+-N (84.74% averagely) was obtained at various salinities, while the rates varied from 6.34% to 89.19% and 22.54% to 87.48% for NO3-N and total nitrogen (TN), respectively. Overall, nitrogen removal efficiencies were greater at lower salinities. Molecular biological analyses verified the co-occurrence of dissimilatory nitrate reduction to ammonium (DNRA), denitrification, anaerobic ammonium oxidation (anammox) and nitrification in the mesocosms, reportedly contributing to nitrogen removal in TF CWs. The absolute copy numbers of nitrogen functional genes and total bacterial 16S rRNA were 2.54 × 103-7.35 × 107 and 3.21 × 107-7.82 × 109 copies g−1 dg (dry gravel), respectively, with the dominant phyla, i.e., Chloroflexi, Proteobacteria, Actinobacteriota, Cyanobacteria, and Firmicutes, accounting for over 80% of the sequences. The relative abundances of the genera related to nitrification and dissimilatory nitrate reduction processes, i.e., denitrification, anammox and DNRA, varied from 0.16% to 0.89% and from 3.66% to 11.59%, respectively, while quantitative relationships confirmed NH4+-N transformation rate was jointly controlled by amoA, hzsB, nxrA and nrfA, and NO3-N removal rate by nirS, nosZ, narG, qnorB and nxrA. These findings may shed light on quantitative molecular mechanisms for nitrogen removal in TF CWs for the saline water treatment, providing a sustainable solution to nitrogen pollution problem in the estuary ecosystem.

Original languageEnglish
Article number117446
JournalWater Research
Volume202
DOIs
Publication statusPublished - 2021 Sept 1

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Civil and Structural Engineering
  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Salinity-driven nitrogen removal and its quantitative molecular mechanisms in artificial tidal wetlands'. Together they form a unique fingerprint.

Cite this