Abstract
The Holy Grail of precision medicine is the comprehensive integration of patient genotypic with phenotypic data to develop personalized disease prevention and treatment strategies. Next-generation sequencing technologies (NGS) and other types of high-throughput assays have exploded in popularity in recent years, thanks to their ability to produce an enormous volume of data quickly and at relatively low cost compared to more traditional laboratory methods. The ability to generate big data brings us one step closer to the realization of precision medicine; nevertheless, across the life cycle of such data, from experimental design to data capture, management, analysis, and utilization, many challenges remain. In this paper, we reviewed and discussed several statistical methods to estimate sample size based on the Poisson and Negative Binomial distributions for RNAseq experimental design.
Original language | English |
---|---|
Title of host publication | Frontiers of Biostatistical Methods and Applications in Clinical Oncology |
Publisher | Springer Singapore |
Pages | 359-379 |
Number of pages | 21 |
ISBN (Electronic) | 9789811001260 |
ISBN (Print) | 9789811001246 |
DOIs | |
Publication status | Published - 2017 Oct 3 |
All Science Journal Classification (ASJC) codes
- General Medicine
- General Mathematics
- General Social Sciences