Abstract
Determination of an adequate sample size is critical to the design of research ventures. For clustered right-censored data, Manatunga and Chen [Sample size estimation for survival outcomes in cluster-randomized studies with small cluster sizes. Biometrics. 2000;56(2):616–621] proposed a sample size calculation based on considering the bivariate marginal distribution as Clayton copula model. In addition to the Clayton copula, other important family of copulas, such as Gumbel and Frank copulas are also well established in multivariate survival analysis. However, sample size calculation based on these assumptions has not been fully investigated yet. To broaden the scope of Manatunga and Chen [Sample size estimation for survival outcomes in cluster-randomized studies with small cluster sizes. Biometrics. 2000;56(2):616–621]'s research and achieve a more flexible sample size calculation for clustered right-censored data, we extended the work by assuming the marginal distribution as bivariate Gumbel and Frank copulas. We evaluate the performance of the proposed method and investigate the impacts of the accrual times, follow-up times and the within-clustered correlation effect of the study. The proposed method is applied to two real-world studies, and the R code is made available to users.
Original language | English |
---|---|
Pages (from-to) | 696-706 |
Number of pages | 11 |
Journal | Journal of Statistical Computation and Simulation |
Volume | 86 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2016 Mar 3 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Modelling and Simulation
- Statistics, Probability and Uncertainty
- Applied Mathematics