TY - JOUR
T1 - Selenium uptake, volatilization, and transformation by the cyanobacterium Microcystis aeruginosa and post-treatment of Se-laden biomass
AU - Zhou, Chuanqi
AU - Huang, Jung Chen
AU - Gan, Xinyu
AU - He, Shengbing
AU - Zhou, Weili
N1 - Funding Information:
We thank the Shanghai Synchrotron Radiation Facility and the Stanford Synchrotron Radiation Lightsource for the beam time granted to J.H. We thank Dr. Wenhong Peng and the laboratory staff of the Instrumental Analysis Center at SJTU for their assistance on transmission electron microscopy. We also thank the laboratory staff of the School of Environmental Science and Engineering for their assistance on ion chromatography.
Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/10
Y1 - 2021/10
N2 - With a narrow margin between beneficial and toxic effects, selenium (Se) is of great concern due to its increasing level in aquatic environments. The accumulation and transformation of Se by the cyanobacterium Microcystis aeruginosa and effects of nutrients, particularly sulfate, were investigated. The nutrient-deprived cyanobacterium removed water-borne selenate (82.2 ± 0.93%) faster than selenite (58.9 ± 1.77%), with 86.0 ± 1.41% and 77.2 ± 1.00%, respectively, of the Se accumulated in the biomass and the rest volatilized. When supplied with excess nutrients, the Se accumulation and volatilization rates were significantly inhibited, with the removal efficiency dropping to 50.2 ± 2.59% and 7.37 ± 0.93% for selenite and selenate, respectively. When M. aeruginosa was tested with inadequate, appropriate, and adequate levels of sulfate, Se uptake decreased with increasing sulfate concentrations, particularly for selenate (from 34.1 to 4.81%). Using X-ray absorption near-edge structure to speciate biomass Se, selenite and selenate were transformed to organo-Se (87.3–100%), with or without nutrients present, suggesting M. aeruginosa could efficiently reduce Se oxyanions to more bioavailable forms. With increasing sulfate levels (5.0 and 10.0 mg S/L), percentages of SeMet converted from selenite decreased by 28.2–33.0%, with 19.1–33.2% as elemental Se, while organo-Se remained dominant (93.6–95.1%) in selenate-treated M. aeruginosa. Transmission electron microscopy shows structural damage in the cell wall at exposure to selenite (1600 μg Se/L), with the intracellular structure intact. To prevent Se biomagnification along aquatic food chains, the Se-laden biomass was combusted as a post-treatment, leading to a significant reduction in Se content (∼99.2%) and Se bioavailability, with inorganic Se (45.0–70.5%) predominant in the residue.
AB - With a narrow margin between beneficial and toxic effects, selenium (Se) is of great concern due to its increasing level in aquatic environments. The accumulation and transformation of Se by the cyanobacterium Microcystis aeruginosa and effects of nutrients, particularly sulfate, were investigated. The nutrient-deprived cyanobacterium removed water-borne selenate (82.2 ± 0.93%) faster than selenite (58.9 ± 1.77%), with 86.0 ± 1.41% and 77.2 ± 1.00%, respectively, of the Se accumulated in the biomass and the rest volatilized. When supplied with excess nutrients, the Se accumulation and volatilization rates were significantly inhibited, with the removal efficiency dropping to 50.2 ± 2.59% and 7.37 ± 0.93% for selenite and selenate, respectively. When M. aeruginosa was tested with inadequate, appropriate, and adequate levels of sulfate, Se uptake decreased with increasing sulfate concentrations, particularly for selenate (from 34.1 to 4.81%). Using X-ray absorption near-edge structure to speciate biomass Se, selenite and selenate were transformed to organo-Se (87.3–100%), with or without nutrients present, suggesting M. aeruginosa could efficiently reduce Se oxyanions to more bioavailable forms. With increasing sulfate levels (5.0 and 10.0 mg S/L), percentages of SeMet converted from selenite decreased by 28.2–33.0%, with 19.1–33.2% as elemental Se, while organo-Se remained dominant (93.6–95.1%) in selenate-treated M. aeruginosa. Transmission electron microscopy shows structural damage in the cell wall at exposure to selenite (1600 μg Se/L), with the intracellular structure intact. To prevent Se biomagnification along aquatic food chains, the Se-laden biomass was combusted as a post-treatment, leading to a significant reduction in Se content (∼99.2%) and Se bioavailability, with inorganic Se (45.0–70.5%) predominant in the residue.
UR - http://www.scopus.com/inward/record.url?scp=85105894628&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105894628&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2021.130593
DO - 10.1016/j.chemosphere.2021.130593
M3 - Article
C2 - 33932907
AN - SCOPUS:85105894628
SN - 0045-6535
VL - 280
JO - Chemosphere
JF - Chemosphere
M1 - 130593
ER -