Semidefinite programming based algorithms for sensor network localization

Pratik Biswas, Tzu Chen Lian, Ta Chung Wang, Yinyu Ye

Research output: Contribution to journalReview articlepeer-review

465 Citations (Scopus)

Abstract

An SDP relaxation based method is developed to solve the localization problem in sensor networks using incomplete and inaccurate distance information. The problem is set up to find a set of sensor positions such that given distance constraints are satisfied. The nonconvex constraints in the formulation are then relaxed in order to yield a semidefinite program that can be solved efficiently. The basic model is extended in order to account for noisy distance information. In particular, a maximum likelihood based formulation and an interval based formulation are discussed. The SDP solution can then also be used as a starting point for steepest descent based local optimization techniques that can further refine the SDP solution. We also describe the extension of the basic method to develop an iterative distributed SDP method for solving very large scale semidefinite programs that arise out of localization problems for large dense networks and are intractable using centralized methods. The performance evaluation of the technique with regard to estimation accuracy and computation time is also presented by the means of extensive simulations. Our SDP scheme also seems to be applicable to solving other Euclidean geometry problems where points are locally connected.

Original languageEnglish
Pages (from-to)188-220
Number of pages33
JournalACM Transactions on Sensor Networks
Volume2
Issue number2
DOIs
Publication statusPublished - 2006

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Semidefinite programming based algorithms for sensor network localization'. Together they form a unique fingerprint.

Cite this