Set-point control with gravity compensation for robots with input/output delays

Yen Chen Liu, Nikhil Chopra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Set-point control problem for robotic manipulators when signals are exchanged via a delayed communication channel is studied in this paper. The gravitational effects, which were not considered or were assumed to be pre-compensated in the previous research, are considered in this paper. Using an appropriately defined controller with gravity compensation, it is first shown that simply utilizing the scattering variables can stabilize the closed-loop system in the presence of constant delays; however, position regulation cannot be guaranteed. Therefore, we study a new control algorithm where explicit position feedback, in conjunction with scattering variables is used, to guarantee both stability and tracking performance. Moreover, the efficacy of this architecture to handle time-varying input/output delays is also demonstrated. The proposed algorithm is numerically validated on a two-degree-of-freedom manipulator for both constant and time-varying delays.

Original languageEnglish
Title of host publicationASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Pages467-474
Number of pages8
DOIs
Publication statusPublished - 2012 Dec 1
EventASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 - Fort Lauderdale, FL, United States
Duration: 2012 Oct 172012 Oct 19

Publication series

NameASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Volume1

Other

OtherASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
CountryUnited States
CityFort Lauderdale, FL
Period12-10-1712-10-19

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Set-point control with gravity compensation for robots with input/output delays'. Together they form a unique fingerprint.

  • Cite this

    Liu, Y. C., & Chopra, N. (2012). Set-point control with gravity compensation for robots with input/output delays. In ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 (pp. 467-474). (ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012; Vol. 1). https://doi.org/10.1115/DSCC2012-MOVIC2012-8772