Shear-thinning effects in annular-orifice viscous fluid dampers

Chien Yuan Hou, Deh Shiu Hsu, Yung Feng Lee, Hsing Yuan Chen, Junn Deh Lee

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


The number of construction projects using viscous fluid dampers for the purpose of seismic energy dissipation has been increasing in recent years. Usually, resisting forces provided by a viscous fluid damper are nonlinearly related to the damper operation velocity. In the current study, the mechanism of the nonlinear behavior is studied. It is found that the fluid shear rate in the orifices of a damper is high enough to cause shear thinning of the fluid, that is, the non-Newtonian behavior of the fluid must be considered to capture the viscous damper's non-linearity. Carreau's equation giving the shear-thinning relationship between fluid viscosity and shear rate is employed in a finite element model. The model is used to calculate the fluid dynamics in viscous dampers and the calculated results successfully explain the nonlinear behavior. Effects of the damper geometry and the fluid viscosity on the damper non-linearity are also tested and discussed. Again, the trend shown in experimental results can be fully explained by the shear-thinning concept. In addition, the behavior of a damper operated at ultra high velocity is addressed.

Original languageEnglish
Pages (from-to)275-287
Number of pages13
JournalJournal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an
Issue number2
Publication statusPublished - 2007

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Shear-thinning effects in annular-orifice viscous fluid dampers'. Together they form a unique fingerprint.

Cite this