Shock-capturing and front-tracking methods for granular avalanches

Y. C. Tai, S. Noelle, J. M.N.T. Gray, K. Hutter

Research output: Contribution to journalArticlepeer-review

102 Citations (Scopus)


Shock formations are observed in granular avalanches when supercritical flow merges into a region of subcritical flow. In this paper we employ a shock-capturing numerical scheme for the one-dimensional Savage-Hutter theory of granular flow to describe this phenomenon. A Lagrangian moving mesh scheme applied to the nonconservative form of the equations reproduces smooth solutions of these free boundary problems very well, but fails when shocks are formed. A nonoscillatory central (NOC) difference scheme with TVD limiter or WENO cell reconstruction for the conservative equations is therefore introduced. For the avalanche free boundary problems it must be combined with a front-tracking method, developed here, to properly describe the margin evolution. It is found that this NOC scheme combined with the front-tracking module reproduces both the shock wave and the smooth solution accurately. A piecewise quadratic WENO reconstruction improves the smoothness of the solution near local extrema. The schemes are checked against exact solutions for (1) an upward moving shock wave, (2) the motion of a parabolic cap down an inclined plane, and (3) the motion of a parabolic cap down a curved slope ending in a flat run-out region, where a shock is formed as the avalanche comes to a halt.

Original languageEnglish
Pages (from-to)269-301
Number of pages33
JournalJournal of Computational Physics
Issue number1
Publication statusPublished - 2002 Jan 1

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Modelling and Simulation
  • Physics and Astronomy (miscellaneous)
  • Physics and Astronomy(all)
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics


Dive into the research topics of 'Shock-capturing and front-tracking methods for granular avalanches'. Together they form a unique fingerprint.

Cite this