Short communication: Measurement of intrinsic articular joint stability

M. E. Zobitz, A. M. Halder, L. J. Berglund, S. G. Kuhl, Kai Nan An

Research output: Contribution to journalArticlepeer-review

Abstract

Concavity-compression is an important mechanism for keeping a joint centered despite a large range of motion. The purpose of this study was to explain how the results of a test measuring the joint intrinsic stability can be interpreted and related to joint architecture. As an example, the method was demonstrated for the glenohumeral joint although the versatility allows any articulating joint, whether natural or prosthetic, to be analyzed. The initial slope from the central point was relatively steep, indicating a large resistance to translation. The peak translation force occurred within the first 5 mm of displacement for the glenohumeral joint, indicating a high congruence between the humerus and glenoid surfaces. Stability ratio, calculated as the maximum translation force divided by the applied joint compressive force, makes it possible to compare the stabilizing effect under different compressive loads for different anatomical directions. In hanging arm position, the joint stability ratio ranged from 30.5% to 60.1%. Finally, the effective depth of the concavity and the maximum range of joint translation can be measured by completely dislocating the joint. For the glenohumeral specimen, the smallest glenoid concavity depth, 3.8 mm, occurred in the interior direction. The joint translation limit was smallest in the anterior-posterior direction (28.0 mm). The methodology presented in this study will allow consistent testing parameters between different trials, easily allowing parametric studies to gain a more complete understanding of articular joints.

Original languageEnglish
Pages (from-to)185-191
Number of pages7
JournalJournal of Musculoskeletal Research
Volume5
Issue number3
DOIs
Publication statusPublished - 2001

All Science Journal Classification (ASJC) codes

  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Short communication: Measurement of intrinsic articular joint stability'. Together they form a unique fingerprint.

Cite this