Abstract
This study used finite element analysis to simulate the temperature characteristics of a micro polymerase chain reaction (PCR) chip. The micro-PCR chip was fabricated on a silicon wafer and Pyrex glass using photolithography, wet etching, and anodic bonding methods. The main goal of this study was to analyze the temperature uniformity and distribution of the micro-PCR chip, the temperature distribution of the DNA sample, and the transient temperature difference between the heater and DNA sample. The finite element analysis results were also confirmed by one-dimensional theoretic analysis. The simulation results were used to improve the thermal cycling time of a rapid micro-PCR system, consisting of a rapid thermal cycling system and a micro-PCR chip. The improved thermal cycles of the rapid μPCR system were verified using serum samples from patients with chronic hepatitis C. The hepatitis C virus (HCV) amplicon of the rapid μPCR system was analyzed by slab gel electrophoresis with DNA marker separation in parallel.
Original language | English |
---|---|
Pages (from-to) | 127-133 |
Number of pages | 7 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 71 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 2000 Nov 15 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry