Simulation of perforation behaviour of carbon fiber reinforced 6061-T6 aluminum metal matrix composite by a tungsten projectile

Woei-Shyan Lee, C. H. Lai, S. T. Chiou

Research output: Contribution to journalConference articlepeer-review

Abstract

Explicit finite element code (LS-DYNA3D program) simulation is used to investigate the penetration and perforation behaviour of 6061-T6 aluminum plate and C12K33 carbon fiber reinforced 6061-T6 aluminum metal matrix composite plate when impacted by a tungsten projectile. The plate is impacted by the projectile at the angle of incidence of 0° (i.e. normal direction), and three impact velocities are used, 500m/s, 1000 m/s and 1500m/s. The composite plate has a laminate stacking sequence of (0°/90°)2 and is tested at fiber volume fractions of 5%, 10% and 15%. The carbon fiber laminate is modeled as Hughes-Liu shell elements, whereas the projectile, aluminum plate and composite's aluminum matrix are modeled as 8-node hexahedron elements. The material model for the tungsten projectile, aluminum plate and composite's aluminum matrix is elastic-plastic-hydrodynamic, while the model for the carbon fiber laminate is the Chang-Chang composite failure model. Plate perforation is found to occur under all studied impact conditions. Deformation behaviour of plate and projectile as well as projectile post-perforation velocity and deceleration of the projectile depend strongly on plate properties and impact velocity.

Original languageEnglish
Pages (from-to)185-194
Number of pages10
JournalStructures and Materials
Volume8
Publication statusPublished - 2000 Dec 1
EventSixth International Conference on Structures under Shock and Impact, SUSI VI - Cambridge, United Kingdom
Duration: 2000 Jul 32000 Jul 5

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Simulation of perforation behaviour of carbon fiber reinforced 6061-T6 aluminum metal matrix composite by a tungsten projectile'. Together they form a unique fingerprint.

Cite this