Simulation study of junction effect on field emission from one-dimensional nanostructure grown on silicon substrate

Yung-Chiang Lan, Mingxun Yan, Wen Jen Liu, Yuan Hu, Tsang Lang Lin

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

In this article, the field-emission properties of the one-dimensional nanostructure grown on doped silicon substrate have been studied via computer simulation. The classical transport equation is used to describe the carrier transport in the material and solved together with Poisson's equation. The field emission at the emitter-vacuum interface is modeled by the Fowler-Nordheim equation. Our simulation results agree with the experimental results qualitatively. For narrow-band-gap material, the p -type Si substrate will limit the field-emission current in the high applied voltage region. This result can be ascribed to the formation of reverse-biased p-n junction. For wide-band-gap material, however, the p -type Si substrate will enhance the field-emission current, which is attributable to the lower carrier injection barrier height and the stronger driving force offered by the p -type substrate.

Original languageEnglish
Pages (from-to)918-923
Number of pages6
JournalJournal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Volume24
Issue number2
DOIs
Publication statusPublished - 2006 Mar 1

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Simulation study of junction effect on field emission from one-dimensional nanostructure grown on silicon substrate'. Together they form a unique fingerprint.

Cite this