TY - JOUR
T1 - Simultaneous control of elemental mercury/sulfur dioxide/nitrogen monoxide from coal-fired flue gases with metal oxide-impregnated activated carbon
AU - Chiu, Chun Hsiang
AU - Lin, Hong Ping
AU - Kuo, Tien Ho
AU - Chen, Shiao Shing
AU - Chang, Tien Chin
AU - Su, Kai Han
AU - Hsi, Hsing Cheng
PY - 2015/10/1
Y1 - 2015/10/1
N2 - This research investigated the effects of transition metal oxide impregnation on the physical/chemical properties and on the multipollutant (i.e., Hg0/SO2/NO) control of a commercial coconut shell-based activated carbon. V, Mn, and Cu oxides of 5 wt% as their precursor metal hydroxides were impregnated onto the activated carbon surface. After the transition metal oxide impregnation, the surface area and pore volume of activated carbon decreased. The surface morphology of activated carbons was similar prior to and after impregnation. Mn3+/Mn4+and Cu+/Cu2+ were shown to be the major valence states presenting in the MnOx and CuOx/CAC samples, respectively. CuOx/CAC possessed the greatest Hg0 removal efficiency of approximately 54.5% under N2 condition and 98.9% under flue gas condition, respectively at 150°C. When the gas temperature increased to 350°C, the metal oxide-impregnated activated carbon still possessed appreciable Hg0 removal, especially for CuOx/CAC. The VOx/CAC had the largest SO2 removal enhancement of approximately 28.3% at 350°C. The NO removal of raw and impregnated activated carbon was very small under flue gas condition, indicating that adsorption of NO using metal oxide-impregnated activated carbon may not be a suitable route for NO control.
AB - This research investigated the effects of transition metal oxide impregnation on the physical/chemical properties and on the multipollutant (i.e., Hg0/SO2/NO) control of a commercial coconut shell-based activated carbon. V, Mn, and Cu oxides of 5 wt% as their precursor metal hydroxides were impregnated onto the activated carbon surface. After the transition metal oxide impregnation, the surface area and pore volume of activated carbon decreased. The surface morphology of activated carbons was similar prior to and after impregnation. Mn3+/Mn4+and Cu+/Cu2+ were shown to be the major valence states presenting in the MnOx and CuOx/CAC samples, respectively. CuOx/CAC possessed the greatest Hg0 removal efficiency of approximately 54.5% under N2 condition and 98.9% under flue gas condition, respectively at 150°C. When the gas temperature increased to 350°C, the metal oxide-impregnated activated carbon still possessed appreciable Hg0 removal, especially for CuOx/CAC. The VOx/CAC had the largest SO2 removal enhancement of approximately 28.3% at 350°C. The NO removal of raw and impregnated activated carbon was very small under flue gas condition, indicating that adsorption of NO using metal oxide-impregnated activated carbon may not be a suitable route for NO control.
UR - http://www.scopus.com/inward/record.url?scp=84942250624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942250624&partnerID=8YFLogxK
U2 - 10.4209/aaqr.2015.03.0176
DO - 10.4209/aaqr.2015.03.0176
M3 - Article
AN - SCOPUS:84942250624
VL - 15
SP - 2094
EP - 2103
JO - Aerosol and Air Quality Research
JF - Aerosol and Air Quality Research
SN - 1680-8584
IS - 5
ER -