Simultaneous Detection of Multi-Target Vital Signs Using EEMD Algorithm Based on FMCW Radar

Guan Wei Fang, Ching Yao Huang, Chin Lung Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

This paper presents a novel approach to simultaneously monitor multi-target vital-signs using a frequency modulation continuous wave (FMCW) radar within the resolution limitation. For a traditional system architecture on multi-target vital-signs monitoring, complicated systems are required such as phased array radar or continuous wave (CW) radar with beamforming technology. In contrast, this architecture has the advantage of enhanced resolution capability, relatively simple circuit, and low cost. By using advanced signal processing such as adaptive boundary, we can detect multi-target vital signs even though the difference of the distances to the two targets is less than the range resolution of FMCW radar. In terms of demodulation, heart rate (HR) is susceptible to the harmonic of respiratory rate (RR) using complex signal demodulation (CSD). Therefore, this paper uses an ensemble empirical mode decomposition (EEMD) algorithm to extract the intrinsic mode functions of RR and HR. Experiments show that, we can improve signal-to-noise ratio (SNR) and accuracy significantly using this algorithm. And the vital sign errors of the two targets separated at 70 cm and 50 cm are averagely 2.35% and 4.44%, respectively.

Original languageEnglish
Title of host publicationIEEE MTT-S 2019 International Microwave Biomedical Conference, IMBioC 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538673959
DOIs
Publication statusPublished - 2019 May
Event2019 IEEE MTT-S International Microwave Biomedical Conference, IMBioC 2019 - Nanjing, China
Duration: 2019 May 62019 May 8

Publication series

NameIEEE MTT-S 2019 International Microwave Biomedical Conference, IMBioC 2019 - Proceedings

Conference

Conference2019 IEEE MTT-S International Microwave Biomedical Conference, IMBioC 2019
CountryChina
CityNanjing
Period19-05-0619-05-08

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Computer Science Applications
  • Health Informatics
  • Instrumentation
  • Human-Computer Interaction
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Simultaneous Detection of Multi-Target Vital Signs Using EEMD Algorithm Based on FMCW Radar'. Together they form a unique fingerprint.

Cite this