Single-pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation

Chih Chun Lin, Ru Wei Lin, Chih Wei Chang, Gwo Jaw Wang, Kuo An Lai

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Pulsed electromagnetic field (PEMF) therapy has been used for more than three decades to treat bone diseases. The main complaint about using PEMF is that it is time-consuming. Previously, we showed single-pulsed electromagnetic field (SPEMF) applied for 3min daily increased osteogenic differentiation of mesenchymal stem cells and accelerated bone growth in a long bone defect model. In the current study, we investigated the mechanism of SPEMF to increase osteogenic differentiation in osteoblastic cells. We found that both short-term (SS) and long-term (SL) SPEMF treatment increased mineralization, while alkaline phosphatase (ALP) activity increased during the first 5 days of SPEMF treatment. SS treatment increased gene expression of Wnt1, Wnt3a, Wnt10b, Fzd9, ALP, and Bmp2. Also, SPEMF inhibited sclerostin after 5 days of treatment, and that inhibition was more significant with SL treatment. SL SPEMF increased expression of parathyroid hormone-related protein (PTHrP) but decreased expression of Sost gene, which encodes sclerostin. Together, the early osteogenic effect of SPEMF utilizes the canonical Wnt signaling pathway while the inhibitory effect of long-term SPEMF on sclerostin may be attributable to PTHrP upregulation. This study enhances our understanding of cellular mechanisms to support the previous finding and may provide new insight for clinical applications.

Original languageEnglish
Pages (from-to)494-505
Number of pages12
JournalBioelectromagnetics
Volume36
Issue number7
DOIs
Publication statusPublished - 2015 Oct 1

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Physiology
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Single-pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation'. Together they form a unique fingerprint.

  • Cite this