TY - GEN
T1 - Solitary wave interaction with a submerged permeable breakwater
T2 - 33rd International Conference on Coastal Engineering 2012, ICCE 2012
AU - Wu, Yun Ta
AU - Hsiao, Shih Chun
AU - Chen, Guan Shiue
PY - 2012/12/1
Y1 - 2012/12/1
N2 - We study the interactions between a non-breaking solitary wave and a submerged permeable breakwater experimentally and numerically. The particle image velocimetry (PIV) technique was employed to measure instantaneous free surface displacements and velocity fields in the vicinity of the porous media. The porous media, consisted of uniform glass-made spheres, was mounted on the seafloor. Quantitative mean properties were obtained by ensemble averaging 30 repeated instantaneous measurements. In addition, two different numerical considerations are taken to simulate the experiments. One is to model an idealized volume-averaged porous media using a two-dimensional (2D) volume of fluid (VOF)-type model. This model is based on the Volume-Averaged Reynolds-Averaged Navier-Stokes (VARANS) equations coupled with the non-linear k-ε turbulence closure solver. The other is to model the real porous breakwater constructed by spheres using a three-dimensional (3D) VOF-type model. This model solves 3D incompressible Navier-Stokes equations with Large-eddy-simulation (LES) model. The comparisons were performed between measurements, 2D and 3D numerical results for the time histories of the free surface elevation, instantaneous free surface displacements and corresponding velocity properties around the permeable object. Fairly good agreements were obtained. The verified 3D numerical results were used to trace the trajectories of fluid particle around the porous media to help understand the possible sediment movements in suspended loads. Also, the 2D numerical model is used to estimate the energy reflection, transmission and dissipation using the energy integral method by varying the aspect ratio and the grain size of the permeable obstacle.
AB - We study the interactions between a non-breaking solitary wave and a submerged permeable breakwater experimentally and numerically. The particle image velocimetry (PIV) technique was employed to measure instantaneous free surface displacements and velocity fields in the vicinity of the porous media. The porous media, consisted of uniform glass-made spheres, was mounted on the seafloor. Quantitative mean properties were obtained by ensemble averaging 30 repeated instantaneous measurements. In addition, two different numerical considerations are taken to simulate the experiments. One is to model an idealized volume-averaged porous media using a two-dimensional (2D) volume of fluid (VOF)-type model. This model is based on the Volume-Averaged Reynolds-Averaged Navier-Stokes (VARANS) equations coupled with the non-linear k-ε turbulence closure solver. The other is to model the real porous breakwater constructed by spheres using a three-dimensional (3D) VOF-type model. This model solves 3D incompressible Navier-Stokes equations with Large-eddy-simulation (LES) model. The comparisons were performed between measurements, 2D and 3D numerical results for the time histories of the free surface elevation, instantaneous free surface displacements and corresponding velocity properties around the permeable object. Fairly good agreements were obtained. The verified 3D numerical results were used to trace the trajectories of fluid particle around the porous media to help understand the possible sediment movements in suspended loads. Also, the 2D numerical model is used to estimate the energy reflection, transmission and dissipation using the energy integral method by varying the aspect ratio and the grain size of the permeable obstacle.
UR - http://www.scopus.com/inward/record.url?scp=84884939799&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884939799&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84884939799
SN - 9780989661119
T3 - Proceedings of the Coastal Engineering Conference
BT - Proceedings of the 33rd International Conference on Coastal Engineering 2012, ICCE 2012
Y2 - 1 July 2012 through 6 July 2012
ER -