Abstract
We present some exact results on bond percolation. We derive a relation that specifies the consequences for bond percolation quantities of replacing each bond of a lattice Λ by ℓ bonds connecting the same adjacent vertices, thereby yielding the lattice Λ ℓ. This relation is used to calculate the bond percolation threshold on Λ ℓ. We show that this bond inflation leaves the universality class of the percolation transition invariant on a lattice of dimensionality d≥2 but changes it on a one-dimensional lattice and quasi-one-dimensional infinite-length strips. We also present analytic expressions for the average cluster number per vertex and correlation length for the bond percolation problem on the N→∞ limits of several families of N-vertex graphs. Finally, we explore the effect of bond vacancies on families of graphs with the property of bounded diameter as N→∞.
Original language | English |
---|---|
Pages (from-to) | 676-700 |
Number of pages | 25 |
Journal | Journal of Statistical Physics |
Volume | 149 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2012 Nov 1 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics