Some recent applications of Fischer carbenemetal complexes in organic synthesis

Yao Ting Wu, Takuya Kurahashi, Armin De Meijere

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

{[2-(Dialkylamino)ethenyl]ethoxycarbene}chromium complexes 4 have been made available from lithiated terminal alkynes, hexacarbonylchromium, triethyloxonium tetrafluoroborate and secondary amines in a one-pot operation, in good to excellent yields. Reactions of these complexes with alkynes afford 5-dialkylamino-3-ethoxycyclopentadienes 8 with excellent chemoselectivity. From cyclopentadienes of type 8, angular and linear triquinanes, di- and triannelated benzene derivatives 24/25, steroid-like skeletons 30/31, and hexacycles 32/33 can be obtained with great facility. In addition, otherwise not easily accessible cyclopenta[b]pyrans 42/43 and novel spiro[4.4]nonatrienes 52/53 can be prepared in single operational steps from complexes 4 and terminal alkynes via [3 + 2 + 2 + 1] and [3 + 2 + 2 + 2] cocyclizations incorporating two and three alkyne units, respectively. Upon heating simple Fischer carbene complexes of type 2 with methylenecyclopropanes 64, cyclopentenones 65 are formed by formal [4 + 1] cycloadditions. New carbenemetal complexes which have different chemical reactivities can be formed in situ by transmetallation from the corresponding carbenechromium complexes. Various cyclopentenone, cyclopentene and cycloheptanone derivatives are easily accessible from these new carbenemetal (nickel and rhodium) complexes and an alkyne or an allene.

Original languageEnglish
Pages (from-to)5900-5911
Number of pages12
JournalJournal of Organometallic Chemistry
Volume690
Issue number24-25
DOIs
Publication statusPublished - 2005 Dec 1

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Some recent applications of Fischer carbenemetal complexes in organic synthesis'. Together they form a unique fingerprint.

Cite this