TY - GEN
T1 - Spatial imaging of cracks in fiber reinforced cementitious composites by EIT
AU - Hou, T. C.
AU - Lynch, J. P.
PY - 2008
Y1 - 2008
N2 - Cementitious materials are generally classified as semi-conductors that are capable of carrying electricity when an external electrical signal is applied. The electrical properties of cementitious materials have been widely explored for monitoring their internal hydration processes. However, comparatively less work has been done in using the inherent electrical properties of cementitious materials for structural health monitoring. In this study, the electrical properties of a unique strain-hardening fiber reinforced cementitious composite termed Engineered Cementitious Composite (ECC) are utilized for monitoring the performance and health of ECC structural components. Previous work has utilized two- and four-point probe techniques for measuring ECC bulk conductivity and illustrating the piezoresistive properties of the material. This work introduces electrical impedance tomography (E10 as a powerful sensing methodology that measures the spatial distribution of conductivity over large areas of ECC elements. With a tomographic mapping of ECC conductivity, the distribution of strain fields and cracks in ECC elements can be observed in incredible visual detail.
AB - Cementitious materials are generally classified as semi-conductors that are capable of carrying electricity when an external electrical signal is applied. The electrical properties of cementitious materials have been widely explored for monitoring their internal hydration processes. However, comparatively less work has been done in using the inherent electrical properties of cementitious materials for structural health monitoring. In this study, the electrical properties of a unique strain-hardening fiber reinforced cementitious composite termed Engineered Cementitious Composite (ECC) are utilized for monitoring the performance and health of ECC structural components. Previous work has utilized two- and four-point probe techniques for measuring ECC bulk conductivity and illustrating the piezoresistive properties of the material. This work introduces electrical impedance tomography (E10 as a powerful sensing methodology that measures the spatial distribution of conductivity over large areas of ECC elements. With a tomographic mapping of ECC conductivity, the distribution of strain fields and cracks in ECC elements can be observed in incredible visual detail.
UR - http://www.scopus.com/inward/record.url?scp=67649218401&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649218401&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:67649218401
SN - 9781605603957
SN - 9781605603957
T3 - American Concrete Institute, ACI Special Publication
SP - 53
EP - 71
BT - American Concrete Institute - Health Monitoring Systems and Sensors for Assessing Concrete at the ACI 2008 Spring Convention
T2 - Health Monitoring Systems and Sensors for Assessing Concrete- ACI 2008 Spring Convention
Y2 - 30 March 2008 through 3 April 2008
ER -