Spatial resolution effects of digital terrain models on landslide susceptibility analysis

K. T. Chang, J. Dou, Y. Chang, C. P. Kuo, K. M. Xu, J. K. Liu

Research output: Contribution to journalConference articlepeer-review

8 Citations (Scopus)


The purposes of this study are to identify the maximum number of correlated factors for landslide susceptibility mapping and to evaluate landslide susceptibility at Sihjhong river catchment in the southern Taiwan, integrating two techniques, namely certainty factor (CF) and artificial neural network (ANN). The landslide inventory data of the Central Geological Survey (CGS, MOEA) in 2004-2014 and two digital elevation model (DEM) datasets including a 5-meter LiDAR DEM and a 30-meter Aster DEM were prepared. We collected thirteen possible landslideconditioning factors. Considering the multi-collinearity and factor redundancy, we applied the CF approach to optimize these thirteen conditioning factors. We hypothesize that if the CF values of the thematic factor layers are positive, it implies that these conditioning factors have a positive relationship with the landslide occurrence. Therefore, based on this assumption and positive CF values, seven conditioning factors including slope angle, slope aspect, elevation, terrain roughness index (TRI), terrain position index (TPI), total curvature, and lithology have been selected for further analysis. The results showed that the optimized-factors model provides a better accuracy for predicting landslide susceptibility in the study area. In conclusion, the optimized-factors model is suggested for selecting relative factors of landslide occurrence.

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Geography, Planning and Development


Dive into the research topics of 'Spatial resolution effects of digital terrain models on landslide susceptibility analysis'. Together they form a unique fingerprint.

Cite this