Spatial signal attenuation model of active RFID tags

Shouzhi Xu, Huan Zhou, Changzhi Wu, Chung Ming Huang, Sungkon Moon

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

How to improve localization accuracy is a big challenge for highly dynamic and sparse industrial scenarios with active RFID tags. Since antenna of active tag is anisotropic, its emitting signal propagates damply with transmission distance and emitting orientation. In this paper, we aim at modeling anisotropic signal attenuation of active RFID tags by analyzing measurement data in real environment. As the features of signal attenuation with transmission distance on different signal-emitting orientations are the same, two basic models are regressed using experimental data firstly: 1) directional signal-distribution models for both horizontal and vertical orientation in a certain distance; 2) an attenuation model of RF signal with transmitting distance along one direction. Afterwards, an Anisotropic Signal Attenuation Model of active RFID tag (ASAM) is deduced. Furthermore, a noise filtering model in a tag-grid environment is optimized for the spatial model ASAM. Finally, the experimental results in 400-square-meter experimental field show that the average standard deviation (STD) of the optimized model reduces by 50% when the STD is bigger than 4-dB, and the probability distribution is over 70% when the deviation is less than 2.

Original languageEnglish
Pages (from-to)6947-6960
Number of pages14
JournalIEEE Access
Volume6
DOIs
Publication statusPublished - 2018 Jan 17

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Materials Science(all)
  • Engineering(all)

Fingerprint Dive into the research topics of 'Spatial signal attenuation model of active RFID tags'. Together they form a unique fingerprint.

Cite this