TY - JOUR
T1 - Spectral statistics of large dimensional spearman's rank correlation matrix and its application
AU - Bao, Zhigang
AU - Lin, Liang Ching
AU - Pan, Guangming
AU - Zhou, Wang
N1 - Publisher Copyright:
© Institute of Mathematical Statistics, 2015.
PY - 2015/12
Y1 - 2015/12
N2 - Let Q = (Q1, . . . , Qn) be a random vector drawn from the uniform distribution on the set of all n! permutations of {1, 2, . . . , n}. Let Z = (Z1, . . . , Zn), where Zj is the mean zero variance one random variable obtained by centralizing and normalizing Qj , j = 1, . . . , n. Assume that Xi , i = 1, . . . ,p are i.i.d. copies of 1/√ p Z and X = Xp,n is the p × n random matrix with Xi as its ith row. Then Sn = XX is called the p × n Spearman's rank correlation matrix which can be regarded as a high dimensional extension of the classical nonparametric statistic Spearman's rank correlation coefficient between two independent random variables. In this paper, we establish a CLT for the linear spectral statistics of this nonparametric random matrix model in the scenario of high dimension, namely, p = p(n) and p/n→c ∈ (0,∞) as n→∞.We propose a novel evaluation scheme to estimate the core quantity in Anderson and Zeitouni's cumulant method in [Ann. Statist. 36 (2008) 2553-2576] to bypass the so-called joint cumulant summability. In addition, we raise a two-step comparison approach to obtain the explicit formulae for the mean and covariance functions in the CLT. Relying on this CLT, we then construct a distribution-free statistic to test complete independence for components of random vectors. Owing to the nonparametric property, we can use this test on generally distributed random variables including the heavy-tailed ones.
AB - Let Q = (Q1, . . . , Qn) be a random vector drawn from the uniform distribution on the set of all n! permutations of {1, 2, . . . , n}. Let Z = (Z1, . . . , Zn), where Zj is the mean zero variance one random variable obtained by centralizing and normalizing Qj , j = 1, . . . , n. Assume that Xi , i = 1, . . . ,p are i.i.d. copies of 1/√ p Z and X = Xp,n is the p × n random matrix with Xi as its ith row. Then Sn = XX is called the p × n Spearman's rank correlation matrix which can be regarded as a high dimensional extension of the classical nonparametric statistic Spearman's rank correlation coefficient between two independent random variables. In this paper, we establish a CLT for the linear spectral statistics of this nonparametric random matrix model in the scenario of high dimension, namely, p = p(n) and p/n→c ∈ (0,∞) as n→∞.We propose a novel evaluation scheme to estimate the core quantity in Anderson and Zeitouni's cumulant method in [Ann. Statist. 36 (2008) 2553-2576] to bypass the so-called joint cumulant summability. In addition, we raise a two-step comparison approach to obtain the explicit formulae for the mean and covariance functions in the CLT. Relying on this CLT, we then construct a distribution-free statistic to test complete independence for components of random vectors. Owing to the nonparametric property, we can use this test on generally distributed random variables including the heavy-tailed ones.
UR - http://www.scopus.com/inward/record.url?scp=84946735085&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84946735085&partnerID=8YFLogxK
U2 - 10.1214/15-AOS1353
DO - 10.1214/15-AOS1353
M3 - Article
AN - SCOPUS:84946735085
SN - 0090-5364
VL - 43
SP - 2588
EP - 2623
JO - Annals of Statistics
JF - Annals of Statistics
IS - 6
ER -