Spring Assisting Mechanism for Enhancing the Separation Performance of Digital Light Process 3D Printers

Yu-Sheng Lin, Cheng Jung Yang

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Separation has been a historic problem in digital light process 3D printing, which limits the capability of printing large areas. Over the years, methods for reducing separation force and improving printing quality have primarily relied on changing separation mechanisms and a constrained surface. Most methods require a pulling-up process; however, a few methods can provide the desired lifting distance by themselves. In our previous work, an in-house design named 'spring-assisted mechanism' using the combination of spring with a tilting mechanism was proposed to adapt to different required separation forces. The spring compression can be used to provide an additional force for separation, which results in a shorter lifting distance when encountering different print areas. In this paper, we aim to investigate the separation performance by comparing the proposed mechanism with a conventional tilting mechanism. The Taguchi method is applied to study the importance of design features of the spring-assisted mechanism. The results indicate that the maximum separation force occurring in the spring-assisted mechanism declines significantly to 89%. An additional benefit of the proposed mechanism is that the lifting distance required for separation can be adjusted automatically to different print areas, and a sufficient separation force is very low. Consequently, this paper provides experimental evidence that the spring-assisted mechanism can be used for large-scale printing.

Original languageEnglish
Article number8726385
Pages (from-to)71718-71729
Number of pages12
JournalIEEE Access
Volume7
DOIs
Publication statusPublished - 2019 Jan 1

Fingerprint

3D printers
Printing
Taguchi methods

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Materials Science(all)
  • Engineering(all)

Cite this

@article{175d5a72584645108161a69521c28bce,
title = "Spring Assisting Mechanism for Enhancing the Separation Performance of Digital Light Process 3D Printers",
abstract = "Separation has been a historic problem in digital light process 3D printing, which limits the capability of printing large areas. Over the years, methods for reducing separation force and improving printing quality have primarily relied on changing separation mechanisms and a constrained surface. Most methods require a pulling-up process; however, a few methods can provide the desired lifting distance by themselves. In our previous work, an in-house design named 'spring-assisted mechanism' using the combination of spring with a tilting mechanism was proposed to adapt to different required separation forces. The spring compression can be used to provide an additional force for separation, which results in a shorter lifting distance when encountering different print areas. In this paper, we aim to investigate the separation performance by comparing the proposed mechanism with a conventional tilting mechanism. The Taguchi method is applied to study the importance of design features of the spring-assisted mechanism. The results indicate that the maximum separation force occurring in the spring-assisted mechanism declines significantly to 89{\%}. An additional benefit of the proposed mechanism is that the lifting distance required for separation can be adjusted automatically to different print areas, and a sufficient separation force is very low. Consequently, this paper provides experimental evidence that the spring-assisted mechanism can be used for large-scale printing.",
author = "Yu-Sheng Lin and Yang, {Cheng Jung}",
year = "2019",
month = "1",
day = "1",
doi = "10.1109/ACCESS.2019.2920004",
language = "English",
volume = "7",
pages = "71718--71729",
journal = "IEEE Access",
issn = "2169-3536",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

Spring Assisting Mechanism for Enhancing the Separation Performance of Digital Light Process 3D Printers. / Lin, Yu-Sheng; Yang, Cheng Jung.

In: IEEE Access, Vol. 7, 8726385, 01.01.2019, p. 71718-71729.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Spring Assisting Mechanism for Enhancing the Separation Performance of Digital Light Process 3D Printers

AU - Lin, Yu-Sheng

AU - Yang, Cheng Jung

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Separation has been a historic problem in digital light process 3D printing, which limits the capability of printing large areas. Over the years, methods for reducing separation force and improving printing quality have primarily relied on changing separation mechanisms and a constrained surface. Most methods require a pulling-up process; however, a few methods can provide the desired lifting distance by themselves. In our previous work, an in-house design named 'spring-assisted mechanism' using the combination of spring with a tilting mechanism was proposed to adapt to different required separation forces. The spring compression can be used to provide an additional force for separation, which results in a shorter lifting distance when encountering different print areas. In this paper, we aim to investigate the separation performance by comparing the proposed mechanism with a conventional tilting mechanism. The Taguchi method is applied to study the importance of design features of the spring-assisted mechanism. The results indicate that the maximum separation force occurring in the spring-assisted mechanism declines significantly to 89%. An additional benefit of the proposed mechanism is that the lifting distance required for separation can be adjusted automatically to different print areas, and a sufficient separation force is very low. Consequently, this paper provides experimental evidence that the spring-assisted mechanism can be used for large-scale printing.

AB - Separation has been a historic problem in digital light process 3D printing, which limits the capability of printing large areas. Over the years, methods for reducing separation force and improving printing quality have primarily relied on changing separation mechanisms and a constrained surface. Most methods require a pulling-up process; however, a few methods can provide the desired lifting distance by themselves. In our previous work, an in-house design named 'spring-assisted mechanism' using the combination of spring with a tilting mechanism was proposed to adapt to different required separation forces. The spring compression can be used to provide an additional force for separation, which results in a shorter lifting distance when encountering different print areas. In this paper, we aim to investigate the separation performance by comparing the proposed mechanism with a conventional tilting mechanism. The Taguchi method is applied to study the importance of design features of the spring-assisted mechanism. The results indicate that the maximum separation force occurring in the spring-assisted mechanism declines significantly to 89%. An additional benefit of the proposed mechanism is that the lifting distance required for separation can be adjusted automatically to different print areas, and a sufficient separation force is very low. Consequently, this paper provides experimental evidence that the spring-assisted mechanism can be used for large-scale printing.

UR - http://www.scopus.com/inward/record.url?scp=85067378716&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067378716&partnerID=8YFLogxK

U2 - 10.1109/ACCESS.2019.2920004

DO - 10.1109/ACCESS.2019.2920004

M3 - Article

AN - SCOPUS:85067378716

VL - 7

SP - 71718

EP - 71729

JO - IEEE Access

JF - IEEE Access

SN - 2169-3536

M1 - 8726385

ER -