Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO2

Yijing Chen, Peng Li, Hyunho Noh, Chung Wei Kung, Cassandra T. Buru, Xingjie Wang, Xuan Zhang, Omar K. Farha

Research output: Contribution to journalArticlepeer-review

77 Citations (Scopus)

Abstract

The efficient fixation of excess CO2 from the atmosphere to yield value-added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO2, while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal–organic framework (MOF), termed NU-1006, containing formate dehydrogenase, on a fluorine-doped tin oxide glass electrode modified with Cp*Rh(2,2′-bipyridyl-5,5′-dicarboxylic acid)Cl2 complex. This system converts CO2 into formic acid at a rate of 79±3.4 mm h−1 with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF–enzyme composite exhibited significantly higher catalyst stability when subjected to non-native conditions compared to the free enzyme, doubling the formic acid yield.

Original languageEnglish
Pages (from-to)7682-7686
Number of pages5
JournalAngewandte Chemie - International Edition
Volume58
Issue number23
DOIs
Publication statusPublished - 2019 Jun 3

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)

Fingerprint

Dive into the research topics of 'Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO2'. Together they form a unique fingerprint.

Cite this