Steroid Probes Conjugated with Protein-Protected Gold Nanocluster: Specific and Rapid Fluorescence Imaging of Steroid Receptors in Target Cells

Chi Yan Tsai, Chun Wei Li, Jie Ren Li, Bo Han Jang, Shu Hui Chen

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Steroid ligands can easily diffuse through the cell membrane and this property makes it feasible to be used for in-situ staining of the nuclear receptors. However, nonspecific binding of the internalized ligand probe with the cellular components has caused serious interferences for the detection of receptor-expressing cells. We report a novel gold nanocluster (AuNC)-conjugated estrogen probe that can eliminate nonspecific internalization and accelerate nuclear localization to achieve selective and rapid detection of estrogen receptors (ERs) in live cells. The AuNC, protected by bovine serum albumin (BSA), BSA-AuNCs, was prepared by the synthesis and confirmed to be 1.9 nm in core size and 18 nm in diameter. Ethinyl estradiol was used as the precursor of 17β-estradial (E2) to conjugate with BSA-protected AuNCs via polyethylene glycol linker (E2-PEG/BSA-AuNCs) or to conjugate with Cy3 dyes (E2-Cy3). The conjugated probe was determined to contain five E2 molecules per BSA-AuNC by mass spectrometry and exhibit an emission maximum of around 640 nm, which was not altered by E2 conjugation indicating that the structural integrity of BSA-AuNCs was conserved. E2-PEG/BSA-AuNCs probes were quickly internalized by MCF-7 (ER+) cells and localized to the nuclei in 2 h. Such internalization was sensitive to competition by free E2 and was rarely detected in the controls using either non-conjugated BSA-AuNCs in MCF-7 (ER+) cells or E2-PEG/BSA-AuNCs in MDA-MB-231 (ER-) cells. In contrast to the high specificity of E2-PEG/BSA-AuNCs probe, the uptake of E2-Cy3 probe could not differentiate between MCF-7(ER+) and MDA-MB-231(ER-) cells during the early phases of the treatment. Moreover, nuclear targeting by E2-Cy3 was three times slower than that by the E2-PEG/BSA-AuNC probe. Such accelerated nuclei targeting was consistent with the enhanced cell viability by conjugating E2 with BSA-AuNC. In conclusion, the E2-PEG/BSA-AuNC probes are promising candidates that can be used for the detection of ER+ tumor tissues and the same strategy can be applied to fabricate other steroid probes.

Original languageEnglish
Pages (from-to)1239-1248
Number of pages10
JournalJournal of Fluorescence
Volume26
Issue number4
DOIs
Publication statusPublished - 2016 Jul 1

Fingerprint

Steroid Receptors
Nanoclusters
internalization
Optical Imaging
Bovine Serum Albumin
gold
Gold
Fluorescence
Steroids
Imaging techniques
Estrogen Receptors
integrity
Polyethylene glycols
interference
Proteins
candidacy
Ligands
Conjugated (USP) Estrogens
Ethinyl Estradiol
Structural integrity

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Clinical Psychology
  • Social Sciences (miscellaneous)
  • Sociology and Political Science
  • Spectroscopy
  • Clinical Biochemistry
  • Law

Cite this

@article{ced25040aadb4de0952eabec773b760f,
title = "Steroid Probes Conjugated with Protein-Protected Gold Nanocluster: Specific and Rapid Fluorescence Imaging of Steroid Receptors in Target Cells",
abstract = "Steroid ligands can easily diffuse through the cell membrane and this property makes it feasible to be used for in-situ staining of the nuclear receptors. However, nonspecific binding of the internalized ligand probe with the cellular components has caused serious interferences for the detection of receptor-expressing cells. We report a novel gold nanocluster (AuNC)-conjugated estrogen probe that can eliminate nonspecific internalization and accelerate nuclear localization to achieve selective and rapid detection of estrogen receptors (ERs) in live cells. The AuNC, protected by bovine serum albumin (BSA), BSA-AuNCs, was prepared by the synthesis and confirmed to be 1.9 nm in core size and 18 nm in diameter. Ethinyl estradiol was used as the precursor of 17β-estradial (E2) to conjugate with BSA-protected AuNCs via polyethylene glycol linker (E2-PEG/BSA-AuNCs) or to conjugate with Cy3 dyes (E2-Cy3). The conjugated probe was determined to contain five E2 molecules per BSA-AuNC by mass spectrometry and exhibit an emission maximum of around 640 nm, which was not altered by E2 conjugation indicating that the structural integrity of BSA-AuNCs was conserved. E2-PEG/BSA-AuNCs probes were quickly internalized by MCF-7 (ER+) cells and localized to the nuclei in 2 h. Such internalization was sensitive to competition by free E2 and was rarely detected in the controls using either non-conjugated BSA-AuNCs in MCF-7 (ER+) cells or E2-PEG/BSA-AuNCs in MDA-MB-231 (ER-) cells. In contrast to the high specificity of E2-PEG/BSA-AuNCs probe, the uptake of E2-Cy3 probe could not differentiate between MCF-7(ER+) and MDA-MB-231(ER-) cells during the early phases of the treatment. Moreover, nuclear targeting by E2-Cy3 was three times slower than that by the E2-PEG/BSA-AuNC probe. Such accelerated nuclei targeting was consistent with the enhanced cell viability by conjugating E2 with BSA-AuNC. In conclusion, the E2-PEG/BSA-AuNC probes are promising candidates that can be used for the detection of ER+ tumor tissues and the same strategy can be applied to fabricate other steroid probes.",
author = "Tsai, {Chi Yan} and Li, {Chun Wei} and Li, {Jie Ren} and Jang, {Bo Han} and Chen, {Shu Hui}",
year = "2016",
month = "7",
day = "1",
doi = "10.1007/s10895-016-1811-6",
language = "English",
volume = "26",
pages = "1239--1248",
journal = "Journal of Fluorescence",
issn = "1053-0509",
publisher = "Springer New York",
number = "4",

}

Steroid Probes Conjugated with Protein-Protected Gold Nanocluster : Specific and Rapid Fluorescence Imaging of Steroid Receptors in Target Cells. / Tsai, Chi Yan; Li, Chun Wei; Li, Jie Ren; Jang, Bo Han; Chen, Shu Hui.

In: Journal of Fluorescence, Vol. 26, No. 4, 01.07.2016, p. 1239-1248.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Steroid Probes Conjugated with Protein-Protected Gold Nanocluster

T2 - Specific and Rapid Fluorescence Imaging of Steroid Receptors in Target Cells

AU - Tsai, Chi Yan

AU - Li, Chun Wei

AU - Li, Jie Ren

AU - Jang, Bo Han

AU - Chen, Shu Hui

PY - 2016/7/1

Y1 - 2016/7/1

N2 - Steroid ligands can easily diffuse through the cell membrane and this property makes it feasible to be used for in-situ staining of the nuclear receptors. However, nonspecific binding of the internalized ligand probe with the cellular components has caused serious interferences for the detection of receptor-expressing cells. We report a novel gold nanocluster (AuNC)-conjugated estrogen probe that can eliminate nonspecific internalization and accelerate nuclear localization to achieve selective and rapid detection of estrogen receptors (ERs) in live cells. The AuNC, protected by bovine serum albumin (BSA), BSA-AuNCs, was prepared by the synthesis and confirmed to be 1.9 nm in core size and 18 nm in diameter. Ethinyl estradiol was used as the precursor of 17β-estradial (E2) to conjugate with BSA-protected AuNCs via polyethylene glycol linker (E2-PEG/BSA-AuNCs) or to conjugate with Cy3 dyes (E2-Cy3). The conjugated probe was determined to contain five E2 molecules per BSA-AuNC by mass spectrometry and exhibit an emission maximum of around 640 nm, which was not altered by E2 conjugation indicating that the structural integrity of BSA-AuNCs was conserved. E2-PEG/BSA-AuNCs probes were quickly internalized by MCF-7 (ER+) cells and localized to the nuclei in 2 h. Such internalization was sensitive to competition by free E2 and was rarely detected in the controls using either non-conjugated BSA-AuNCs in MCF-7 (ER+) cells or E2-PEG/BSA-AuNCs in MDA-MB-231 (ER-) cells. In contrast to the high specificity of E2-PEG/BSA-AuNCs probe, the uptake of E2-Cy3 probe could not differentiate between MCF-7(ER+) and MDA-MB-231(ER-) cells during the early phases of the treatment. Moreover, nuclear targeting by E2-Cy3 was three times slower than that by the E2-PEG/BSA-AuNC probe. Such accelerated nuclei targeting was consistent with the enhanced cell viability by conjugating E2 with BSA-AuNC. In conclusion, the E2-PEG/BSA-AuNC probes are promising candidates that can be used for the detection of ER+ tumor tissues and the same strategy can be applied to fabricate other steroid probes.

AB - Steroid ligands can easily diffuse through the cell membrane and this property makes it feasible to be used for in-situ staining of the nuclear receptors. However, nonspecific binding of the internalized ligand probe with the cellular components has caused serious interferences for the detection of receptor-expressing cells. We report a novel gold nanocluster (AuNC)-conjugated estrogen probe that can eliminate nonspecific internalization and accelerate nuclear localization to achieve selective and rapid detection of estrogen receptors (ERs) in live cells. The AuNC, protected by bovine serum albumin (BSA), BSA-AuNCs, was prepared by the synthesis and confirmed to be 1.9 nm in core size and 18 nm in diameter. Ethinyl estradiol was used as the precursor of 17β-estradial (E2) to conjugate with BSA-protected AuNCs via polyethylene glycol linker (E2-PEG/BSA-AuNCs) or to conjugate with Cy3 dyes (E2-Cy3). The conjugated probe was determined to contain five E2 molecules per BSA-AuNC by mass spectrometry and exhibit an emission maximum of around 640 nm, which was not altered by E2 conjugation indicating that the structural integrity of BSA-AuNCs was conserved. E2-PEG/BSA-AuNCs probes were quickly internalized by MCF-7 (ER+) cells and localized to the nuclei in 2 h. Such internalization was sensitive to competition by free E2 and was rarely detected in the controls using either non-conjugated BSA-AuNCs in MCF-7 (ER+) cells or E2-PEG/BSA-AuNCs in MDA-MB-231 (ER-) cells. In contrast to the high specificity of E2-PEG/BSA-AuNCs probe, the uptake of E2-Cy3 probe could not differentiate between MCF-7(ER+) and MDA-MB-231(ER-) cells during the early phases of the treatment. Moreover, nuclear targeting by E2-Cy3 was three times slower than that by the E2-PEG/BSA-AuNC probe. Such accelerated nuclei targeting was consistent with the enhanced cell viability by conjugating E2 with BSA-AuNC. In conclusion, the E2-PEG/BSA-AuNC probes are promising candidates that can be used for the detection of ER+ tumor tissues and the same strategy can be applied to fabricate other steroid probes.

UR - http://www.scopus.com/inward/record.url?scp=84966655492&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966655492&partnerID=8YFLogxK

U2 - 10.1007/s10895-016-1811-6

DO - 10.1007/s10895-016-1811-6

M3 - Article

C2 - 27165037

AN - SCOPUS:84966655492

VL - 26

SP - 1239

EP - 1248

JO - Journal of Fluorescence

JF - Journal of Fluorescence

SN - 1053-0509

IS - 4

ER -