Stimulated single-fiber electromyography in the rat

Thy Sheng Lin, Tain Junn Cheng

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

We constructed an animal model of stimulated single-fiber electromyography (SFEMG) by testing Wistar rats under anesthesia. Stimuli of 1 Hz were applied to the sciatic nerve through an insulated monopolar needle electrode. Single-fiber action potentials were acquired from the gastrocnemius muscle. Jitter was assessed by the mean consecutive difference (MCD). Eighty-seven fibers were obtained from 12 rats. Their MCDs ranged from 2 to 72 μs (17.7 ± 13.4). Seven of these values were less than or equal to 5 μs, and three exceeded 50 μs. Neuromuscular blocking agents injected into some of the rats induced considerable increases in jitter and blocking. A rat with one fiber with an MCD less than 5 μs also received an injection of curare. The jitter showed the same pattern of increment, evidence that the small jitter was not attributable to direct muscle stimulation. These results show that SFEMG can be used on rats. In addition, jitter reflects the changes in motor end-plate function. The findings also suggest the presence of an extremely high safety factor in rat neuromuscular junctions.

Original languageEnglish
Pages (from-to)482-489
Number of pages8
JournalMuscle and Nerve
Volume21
Issue number4
DOIs
Publication statusPublished - 1998

All Science Journal Classification (ASJC) codes

  • Physiology
  • Clinical Neurology
  • Cellular and Molecular Neuroscience
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Stimulated single-fiber electromyography in the rat'. Together they form a unique fingerprint.

Cite this