Store-Operated Ca2+ entry in tumor progression: From molecular mechanisms to clinical implications

Yih Fung Chen, Peng Chan Lin, Yu Min Yeh, Li Hsien Chen, Meng Ru Shen

Research output: Contribution to journalReview articlepeer-review

40 Citations (Scopus)

Abstract

The remodeling of Ca2+ homeostasis has been implicated as a critical event in driving malignant phenotypes, such as tumor cell proliferation, motility, and metastasis. Store-operated Ca2+ entry (SOCE) that is elicited by the depletion of the endoplasmic reticulum (ER) Ca2+ stores constitutes the major Ca2+ influx pathways in most nonexcitable cells. Functional coupling between the plasma membrane Orai channels and ER Ca2+-sensing STIM proteins regulates SOCE activation. Previous studies in the human breast, cervical, and other cancer types have shown the functional significance of STIM/Orai-dependent Ca2+ signals in cancer development and progression. This article reviews the information on the regulatory mechanisms of STIM- and Orai-dependent SOCE pathways in the malignant characteristics of cancer, such as proliferation, resistance, migration, invasion, and metastasis. The recent investigations focusing on the emerging importance of SOCE in the cells of the tumor microenvironment, such as tumor angiogenesis and antitumor immunity, are also reviewed. The clinical implications as cancer therapeutics are discussed.

Original languageEnglish
Article number899
JournalCancers
Volume11
Issue number7
DOIs
Publication statusPublished - 2019 Jul

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Store-Operated Ca2+ entry in tumor progression: From molecular mechanisms to clinical implications'. Together they form a unique fingerprint.

Cite this