Abstract
Using ab initio electronic structure calculations, we have investigated the effect of epitaxial strain on magnetocrystalline anisotropy (MCA) of Ta/FeCo/MgO heterostructure. At small expansive strains on the FeCo layer, the system exhibits perpendicular MCA (PMA). Strain not only has a profound effect on the value of MCA but also induces a switching of magnetic easy axis. Analysis of the energy- and k-resolved distribution of orbital characters of the minority-spin band reveals that a significant contribution to PMA at zero strain arises from the spin-orbit coupling between occupied dx2-y2 and unoccupied dxy states, derived from Fe at the FeCo/MgO interface. The strain effect is attributed to strain-induced shifts of spin-orbit coupled d-states. Our work demonstrates that strain engineering can open a viable pathway towards tailoring magnetic properties for spintronic applications.
Original language | English |
---|---|
Article number | 17B518 |
Journal | Journal of Applied Physics |
Volume | 117 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2015 May 7 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy