Studies of particle levitation in a dielectrophoretic field-flow fraction-based microsorter

Tzong Shyng Leu, Chih Yuan Weng

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


We study particle levitation in a dielectrophoretic field-flow fraction (DEP-FFF) flow sorter by using theoretical and numerical methods. By balancing DEP forces with gravitational and buoyant forces, one can obtain the analytical solution for the particle levitation height. Numerical simulation is carried out and used to compare with the analytical prediction. One can find that there exists a maximum particle levitation height at a specific electrode width (d) for each applied voltage. The maximum levitation height happens at hp /d=0.95. The particle behaviors can be discussed based on the ratio between levitation height (hp) and the width of electrode (d). When levitation height is higher than hp /d >0.6, simulation results show excellent agreement (less than 2% error) with the first-order approximated analytical solution. When levitation height is between 0.43<hp /d<0.6, the results start to show the large discrepancies (more than 2% error) between simulation and the firstorder approximated analytical solution. A higher order theoretical solution has to be considered for this situation. When levitation height is hp /d <0.43, particles will stick on the bottom wall. Approximate theoretical solution is no longer applicable.

Original languageEnglish
Article number021106
JournalJournal of Micro/Nanolithography, MEMS, and MOEMS
Issue number2
Publication statusPublished - 2009

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Studies of particle levitation in a dielectrophoretic field-flow fraction-based microsorter'. Together they form a unique fingerprint.

Cite this