TY - JOUR
T1 - Study of SmTM7.3 microstructure by a simplified method and its correlation to properties
AU - Tsai, D. S.
AU - Ho, K. S.
AU - Chin, T. S.
AU - Chang, Y. H.
AU - Tsai, W. T.
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 1987
Y1 - 1987
N2 - By using a newly developed potentiostatic etching technique, the microstructural evolution of an SmTM7.3 (TM=Co/Fe/Cu/Zr) alloy during different stages of heat treatment has been easily and successfully observed under a conventional scanning electron microscope (SEM). Specimens up to several centimeters were examined, with their features being statistically measured. It is found that the cell structure has been well developed with a median size of 110 nm after aging 2 h at 1123 K, while the intrinsic coercivity ( iHc) was as low as 2 kOe. The cell size grows slowly during subsequent heat treatment to a median size of 220 nm after the whole treatment. For aging at 1123 K for 4 h, iHc value is around 4 kOe, and the platelet phase appears. After aging at 1123 K for 8 h, a large zonal phase and grain boundary phase are visible. It is thus believed that the zonal phase appears after aging for a time period between 4 and 8 h, corresponding to the iHc of 600 kA/m (7.5 kOe). No new microconstituent appears after the isothermal aging for more than 8 h, however growth proceeds. After the whole heat treatment cycle, iHc is much greater than 2400 kA/m (30 kOe), with the zonal phase ranging in size from 300 to 900 nm (in width, averaged 400 nm), 1 to 5 μm in length (averaged 3.6 μm), and 1 to 6 μm in separation (averaged 3.5 μm). The zonal and the grain boundary phases are thus concluded to be the dominating structure for the extremely high coercivity of this alloy. A model is proposed to explain the etching sequence of the microconstituents during the potentiostatic etching, and is successful to explain the resultant microstructure.
AB - By using a newly developed potentiostatic etching technique, the microstructural evolution of an SmTM7.3 (TM=Co/Fe/Cu/Zr) alloy during different stages of heat treatment has been easily and successfully observed under a conventional scanning electron microscope (SEM). Specimens up to several centimeters were examined, with their features being statistically measured. It is found that the cell structure has been well developed with a median size of 110 nm after aging 2 h at 1123 K, while the intrinsic coercivity ( iHc) was as low as 2 kOe. The cell size grows slowly during subsequent heat treatment to a median size of 220 nm after the whole treatment. For aging at 1123 K for 4 h, iHc value is around 4 kOe, and the platelet phase appears. After aging at 1123 K for 8 h, a large zonal phase and grain boundary phase are visible. It is thus believed that the zonal phase appears after aging for a time period between 4 and 8 h, corresponding to the iHc of 600 kA/m (7.5 kOe). No new microconstituent appears after the isothermal aging for more than 8 h, however growth proceeds. After the whole heat treatment cycle, iHc is much greater than 2400 kA/m (30 kOe), with the zonal phase ranging in size from 300 to 900 nm (in width, averaged 400 nm), 1 to 5 μm in length (averaged 3.6 μm), and 1 to 6 μm in separation (averaged 3.5 μm). The zonal and the grain boundary phases are thus concluded to be the dominating structure for the extremely high coercivity of this alloy. A model is proposed to explain the etching sequence of the microconstituents during the potentiostatic etching, and is successful to explain the resultant microstructure.
UR - http://www.scopus.com/inward/record.url?scp=36549101049&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36549101049&partnerID=8YFLogxK
U2 - 10.1063/1.338638
DO - 10.1063/1.338638
M3 - Article
AN - SCOPUS:36549101049
SN - 0021-8979
VL - 61
SP - 3772
EP - 3774
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 8
ER -