Study on electromigration effects and IMC formation on Cu–Sn films due to current stress and temperature

Zhao Ying Wang, Nhat Minh Dang, Po Hsun Wang, Terry Yuan Fang Chen, Ming Tzer Lin

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

In this study, the effects of electromigration on a solder/copper substrate due to temperature and current density stress were investigated. The copper–tin (Cu–Sn) film samples were subjected under a fixed current and various heating conditions (130 C and 180 C) and current densities (different cross-sectional areas). The micro-structural changes and intermetallic compound (IMC) formation were observed, and failure phenomena (brittle cracks, voids, bumps, etc.) on the structures of samples were discussed. The results showed that the IMC thickness increased as the temperature and current density increased. Moreover, it was found that the higher the temperature and current density was, the greater the defects that were observed. By adjusting the designs of sample structures, the stress from the current density can be decreased, resulting in reduced failure phenomena, such as signal delay, distortion, and short circuiting after long-term use of the material components. A detailed IMC growth mechanism and defect formation were also closely studied and discussed.

Original languageEnglish
Article number8893
Pages (from-to)1-18
Number of pages18
JournalApplied Sciences (Switzerland)
Volume10
Issue number24
DOIs
Publication statusPublished - 2020 Dec 2

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Study on electromigration effects and IMC formation on Cu–Sn films due to current stress and temperature'. Together they form a unique fingerprint.

Cite this