Study on the low leakage current of an MIS structure fabricated by ICP-CVD

Shu Yi Tsai, Yang Ming Lu, Min Hsiung Hon

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


As the dimensions of electric devices continue to shrink, it is becoming increasingly important to understand how to obtain good quality gate oxide film materials wilth higher carrier mobility, lower leakage current and greater reliability. All of them have become major concerns in the fabrication of thin film oxide transistors. A novel film deposition method called Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) has received attraction in the semiconductor industry, because it can be capable of generating high density plasmas at extremely low temperature, resulting in less ion bombardment of the material surface. In this work, we present the results of crystallized silicon dioxide films deposited by inductively coupled plasma chemical Vapor deposition technique at an extremely low temperature of 90° C. The value of the refractive index of the crystallized ICP-CVD SiO2 film depends on the r.f. power of the ICP system, and approximates to be 1.46. This value is comparable to that of SiO2 films prepared by thermal oxidation. As the r.f. power of ICP applied more than 1250 Watts, still only the (111) diffraction peak is observed by XRD, which implies a very strong preferred orientation or single crystal structure. Too low or too high r.f. power both produces amorphous SiO2 films. From the I-V curve, the MIS device with a SiO2 dielectric film has a lower leakage current density of 6.8×10-8A/cm2 at 1V as the film prepared at 1750 watts. The highest breakdown field in this study is 15.8 MV/cm. From the FTIR analysis, it was found that more hydrogen atoms incorporate into films and form Si-OH bonds as the r.f. power increases. The existence of Si-OH bonds leads to a poor reliability of the MIS device.

Original languageEnglish
Article number042030
JournalJournal of Physics: Conference Series
Issue numberPART 4
Publication statusPublished - 2008 Mar 1

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


Dive into the research topics of 'Study on the low leakage current of an MIS structure fabricated by ICP-CVD'. Together they form a unique fingerprint.

Cite this