Surface characterization and platelet adhesion studies on fluorocarbons prepared by plasma-induced graft polymerization

Jui Che Lin, Sun Lee Tiong, Chuh Yung Chen

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

It is believed that the interactions between the biological environment and biomaterial surface are the key factors influencing its biocompatibility. Therefore, plasma processing, which can vary the surface properties without altering the bulk properties, has been considered as one of the important techniques for improving a materials' biocompatibility. In this investigation, plasmainduced grafting polymerization of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE), instead of direct plasma polymerization, was attempted with an aim to improve the substrate blood compatibility. Contact angle measurement indicated both fluorocarbon-grafted Pdyethylenes (PEs) are hydrophobic. Due to the additional fluorine and chlorine atoms on the CTFE chain, the PCTFE-grafted PE exhibited a higher hydrophobicity than the PVDF-grafted one. ESCA analysis has revealed that these two plasma-induced fluorocarbon deposits contain almost no CFx (x > 2) binding on the surface layer, indicating the grafting polymerization mainly follows the free radical mechanism instead of the molecule-highly-fragmented reaction steps commonly seen in the direct plasma polymerization treatment. In addition, ATR-FTIR has shown the surface chemical configuration of these PVDFand PCTFE-grafted PEs to be very similar to those of the bulk samples of PVDF and PCTFE. The surface roughness decreased after oxygen plasma treatment and was further reduced by VDF and CTFE grafting polymerization. In vitro platelet adhesion testing indicated these two fluorocarbon grafted PEs are less platelet-activating than the nontreated PE control and oxygen plasma activate one.

Original languageEnglish
Pages (from-to)701-714
Number of pages14
JournalJournal of Biomaterials Science, Polymer Edition
Volume11
Issue number7
DOIs
Publication statusPublished - 2000 Jan 1

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Surface characterization and platelet adhesion studies on fluorocarbons prepared by plasma-induced graft polymerization'. Together they form a unique fingerprint.

  • Cite this