Surface modification of indium tin oxide anodes by self-assembly monolayers

Effects on interfacial morphology and charge injection in organic light-emitting diodes

Lai Wan Chong, Yuh-Lang Lee, Ten-Chin Wen

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Three silane derivatives including dodecyltrichlorosilane (DDTS), phenyltriethoxysilane (PTES) and 3-aminopropyl-methyl-diethoxysilane (APMDS) were used to modify the indium tin oxide (ITO) surfaces. The effects of various terminal groups of the self-assembled monolayers (SAMs) on the growth behavior and interfacial morphologies of N,N′-di(naphthalene-1-yl)-N,N′-diphenylbenzidine (NPB) film deposited on the SAM-modified ITO were studied, as well as their effects on the performance of organic light-emitting diodes (OLED) devices. The results show that the growth behavior of NPB film over-deposited on the SAM-modified ITO is mainly determined by the wettability of the surface. The covering ability and thermal stability of NPB film on the SAM-modified ITO decrease in the order: bare ITO > ITO/PTES > ITO/APMDS > ITO/DDTS. However, the covering characteristic of NPB films on these substrates did not show direct relation to the transport of carriers across the anode/NPB interface as evaluated from the cyclic voltammogram and OLED performance. The turn-on voltages for these SMA-modified OLED devices increase in the order: ITO/PTES < ITO/DDTS ≤ bare ITO < ITO/APMDS. The enhancing effect of PTES on the hole injection is ascribed to the similar structure of PTES to NPB. On the contrary, the inhibition effect of APMDS is caused from the interaction of the lone-pair electrons of amine group to the transport carriers. Since these devices are known to be hole dominant, the luminance efficiency increase in a similar order as that for the turn-on voltage: ITO/PTES < ITO/DDTS ≤ bare ITO < ITO/APMDS.

Original languageEnglish
Pages (from-to)2833-2841
Number of pages9
JournalThin Solid Films
Volume515
Issue number5
DOIs
Publication statusPublished - 2007 Jan 22

Fingerprint

Charge injection
Organic light emitting diodes (OLED)
Tin oxides
indium oxides
Indium
Self assembly
tin oxides
Surface treatment
self assembly
Monolayers
Anodes
anodes
light emitting diodes
injection
Self assembled monolayers
indium tin oxide
coverings
Silanes
spectral mixture analysis
Carrier transport

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Cite this

@article{d69e8593e7bf4301a70d01c8883a01ed,
title = "Surface modification of indium tin oxide anodes by self-assembly monolayers: Effects on interfacial morphology and charge injection in organic light-emitting diodes",
abstract = "Three silane derivatives including dodecyltrichlorosilane (DDTS), phenyltriethoxysilane (PTES) and 3-aminopropyl-methyl-diethoxysilane (APMDS) were used to modify the indium tin oxide (ITO) surfaces. The effects of various terminal groups of the self-assembled monolayers (SAMs) on the growth behavior and interfacial morphologies of N,N′-di(naphthalene-1-yl)-N,N′-diphenylbenzidine (NPB) film deposited on the SAM-modified ITO were studied, as well as their effects on the performance of organic light-emitting diodes (OLED) devices. The results show that the growth behavior of NPB film over-deposited on the SAM-modified ITO is mainly determined by the wettability of the surface. The covering ability and thermal stability of NPB film on the SAM-modified ITO decrease in the order: bare ITO > ITO/PTES > ITO/APMDS > ITO/DDTS. However, the covering characteristic of NPB films on these substrates did not show direct relation to the transport of carriers across the anode/NPB interface as evaluated from the cyclic voltammogram and OLED performance. The turn-on voltages for these SMA-modified OLED devices increase in the order: ITO/PTES < ITO/DDTS ≤ bare ITO < ITO/APMDS. The enhancing effect of PTES on the hole injection is ascribed to the similar structure of PTES to NPB. On the contrary, the inhibition effect of APMDS is caused from the interaction of the lone-pair electrons of amine group to the transport carriers. Since these devices are known to be hole dominant, the luminance efficiency increase in a similar order as that for the turn-on voltage: ITO/PTES < ITO/DDTS ≤ bare ITO < ITO/APMDS.",
author = "Chong, {Lai Wan} and Yuh-Lang Lee and Ten-Chin Wen",
year = "2007",
month = "1",
day = "22",
doi = "10.1016/j.tsf.2006.05.010",
language = "English",
volume = "515",
pages = "2833--2841",
journal = "Thin Solid Films",
issn = "0040-6090",
publisher = "Elsevier",
number = "5",

}

TY - JOUR

T1 - Surface modification of indium tin oxide anodes by self-assembly monolayers

T2 - Effects on interfacial morphology and charge injection in organic light-emitting diodes

AU - Chong, Lai Wan

AU - Lee, Yuh-Lang

AU - Wen, Ten-Chin

PY - 2007/1/22

Y1 - 2007/1/22

N2 - Three silane derivatives including dodecyltrichlorosilane (DDTS), phenyltriethoxysilane (PTES) and 3-aminopropyl-methyl-diethoxysilane (APMDS) were used to modify the indium tin oxide (ITO) surfaces. The effects of various terminal groups of the self-assembled monolayers (SAMs) on the growth behavior and interfacial morphologies of N,N′-di(naphthalene-1-yl)-N,N′-diphenylbenzidine (NPB) film deposited on the SAM-modified ITO were studied, as well as their effects on the performance of organic light-emitting diodes (OLED) devices. The results show that the growth behavior of NPB film over-deposited on the SAM-modified ITO is mainly determined by the wettability of the surface. The covering ability and thermal stability of NPB film on the SAM-modified ITO decrease in the order: bare ITO > ITO/PTES > ITO/APMDS > ITO/DDTS. However, the covering characteristic of NPB films on these substrates did not show direct relation to the transport of carriers across the anode/NPB interface as evaluated from the cyclic voltammogram and OLED performance. The turn-on voltages for these SMA-modified OLED devices increase in the order: ITO/PTES < ITO/DDTS ≤ bare ITO < ITO/APMDS. The enhancing effect of PTES on the hole injection is ascribed to the similar structure of PTES to NPB. On the contrary, the inhibition effect of APMDS is caused from the interaction of the lone-pair electrons of amine group to the transport carriers. Since these devices are known to be hole dominant, the luminance efficiency increase in a similar order as that for the turn-on voltage: ITO/PTES < ITO/DDTS ≤ bare ITO < ITO/APMDS.

AB - Three silane derivatives including dodecyltrichlorosilane (DDTS), phenyltriethoxysilane (PTES) and 3-aminopropyl-methyl-diethoxysilane (APMDS) were used to modify the indium tin oxide (ITO) surfaces. The effects of various terminal groups of the self-assembled monolayers (SAMs) on the growth behavior and interfacial morphologies of N,N′-di(naphthalene-1-yl)-N,N′-diphenylbenzidine (NPB) film deposited on the SAM-modified ITO were studied, as well as their effects on the performance of organic light-emitting diodes (OLED) devices. The results show that the growth behavior of NPB film over-deposited on the SAM-modified ITO is mainly determined by the wettability of the surface. The covering ability and thermal stability of NPB film on the SAM-modified ITO decrease in the order: bare ITO > ITO/PTES > ITO/APMDS > ITO/DDTS. However, the covering characteristic of NPB films on these substrates did not show direct relation to the transport of carriers across the anode/NPB interface as evaluated from the cyclic voltammogram and OLED performance. The turn-on voltages for these SMA-modified OLED devices increase in the order: ITO/PTES < ITO/DDTS ≤ bare ITO < ITO/APMDS. The enhancing effect of PTES on the hole injection is ascribed to the similar structure of PTES to NPB. On the contrary, the inhibition effect of APMDS is caused from the interaction of the lone-pair electrons of amine group to the transport carriers. Since these devices are known to be hole dominant, the luminance efficiency increase in a similar order as that for the turn-on voltage: ITO/PTES < ITO/DDTS ≤ bare ITO < ITO/APMDS.

UR - http://www.scopus.com/inward/record.url?scp=33845936073&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33845936073&partnerID=8YFLogxK

U2 - 10.1016/j.tsf.2006.05.010

DO - 10.1016/j.tsf.2006.05.010

M3 - Article

VL - 515

SP - 2833

EP - 2841

JO - Thin Solid Films

JF - Thin Solid Films

SN - 0040-6090

IS - 5

ER -