Surface modification of TiO2 nanotubes by grafting with APTS coupling agents

Hong Phan Duong, Minh Duc Le, Hung Cuong Dao, Chia Yun Chen

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


Titanium dioxide nanotubes (TNTs) have been considered the promising nanostructures employed for many practical applications such as biomedical, photonic and optoelectronic devices. Nevertheless, strong aggregation of TNTs within various aqueous media significantly hindered their practical utilizations and the capability of dispersing TNTs in the desired solvents are urgent to be improved. Therefore, in this study, the methodic investigations have been performed on the grafted modification of 3-aminopropyl triethoxysilane (APTS) on the surfaces of synthesized TNTs. A preliminary study was carried out to evaluate the influences of key parameters, including the concentrations of coupling agents, temperatures and the reaction durations, on the grafting efficiency of the aminosilane using Statistical design of experiments (DoE) methodology. TNTs with approximately 10-20 nm in diameter were prepared with the controlled hydrothermal treatment of commercialized P25 particles. The obtained products were revealed by the modern physicochemical systems including x-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis. The additions of silane agent, reaction temperature and time have been adjusted to reveal the influences of the grafting efficiency (from 2.5 to 7.8 wt %) by thermal gravimetric analysis (TGA). Analysis of Fourier transform infrared spectroscopy (FTIR) has confirmed the successful link of Ti-O-Si chemical bonds on the grafted TNTs.

Original languageEnglish
Article number105043
JournalMaterials Research Express
Issue number10
Publication statusPublished - 2017 Oct

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Metals and Alloys


Dive into the research topics of 'Surface modification of TiO2 nanotubes by grafting with APTS coupling agents'. Together they form a unique fingerprint.

Cite this