Surface properties and in vitro analyses of immobilized chitosan onto polypropylene non-woven fabric surface using antenna-coupling microwave plasma

Yu Chang Tyan, Jiunn Der Liao, Shu Ping Lin

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Antenna coupling microwave plasma enables a highly efficient and oxidative treatment of the outermost surface of polypropylene (PP) non-woven fabric within a short time period. Subsequently, grafting copolymerization with acrylic acid (AAc) makes the plasma-treated fabric durably hydrophilic and excellent in water absorbency. With high grafting density and strong water affinity, the pAAc-grafted fabric greatly becomes feasible as an intensive absorbent and as a support to promote chitosan-immobilization through amide bonds. Experimental result demonstrated that surface analyses by FTIR-ATR have shown that R-CONH-R', amide binding were emerged between pAAc and chitosan. The XPS measurements on C1s 286.0 eV (C-OH), 286.5 eV (C-N) and 288.1 eV (O=C-NH) also could be found. Bioactivity assessments on the chitosan-immobilized surfaces were anticipated by activated partial thromboplastin time (aPTT), thrombin time (TT), and fibrinogen concentration. By means of cell counter we counted the ratio of blood cell adhesion on the modified fabric matrix. After human plasma incubated with the chitosan-immobilized PP fabrics, the required time for aPTT and blood cell adhesion increased significantly, while fibrinogen concentration and TT did not change. Due to the capability of anticoagulation and cell adhesion, the chitosan-immobilized PP fabric can be used as the substrate for cell culturing and then developed the wound-dressing substitute for second-degree burn.

Original languageEnglish
Pages (from-to)775-781
Number of pages7
JournalJournal of Materials Science: Materials in Medicine
Volume14
Issue number9
DOIs
Publication statusPublished - 2003 Sept 1

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Surface properties and in vitro analyses of immobilized chitosan onto polypropylene non-woven fabric surface using antenna-coupling microwave plasma'. Together they form a unique fingerprint.

Cite this