TY - JOUR
T1 - Survival of glioblastoma treated with a moderately escalated radiation dose—Results of a retrospective analysis
AU - Shieh, Li Tsun
AU - Guo, How Ran
AU - Ho, Chung Han
AU - Lin, Li Ching
AU - Chang, Chin Hong
AU - Ho, Sheng Yow
N1 - Publisher Copyright:
© 2020 Shieh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/5
Y1 - 2020/5
N2 - Glioblastoma (GBM) has the highest fatality rate among primary malignant brain tumors and typically tends to recur locally just adjacent to the original tumor site following surgical resection and adjuvant radiotherapy. We conducted a study to evaluate the survival outcomes between a standard dose (≤ 60 Gy) and moderate radiation dose escalation (>60 Gy), and to identify prognostic factors for GBM. We retrospectively reviewed the medical records of primary GBM patients diagnosed between 2005 and 2016 in two referral hospitals in Taiwan. They were identified from the cancer registry database and followed up from the date of diagnosis to October 2018. The progression-free survival (PFS) and overall survival (OS) were compared between the two dose groups, and independent factors for survival were analyzed through Cox proportional hazard model. We also affirmed the results using Cox regression with least absolute shrinkage and selection operator (LASSO) approach. From our cancer registry database, 142 GBM patients were identified, and 84 of them fit the inclusion criteria. Of the 84 patients, 52 (62%) were males. The radiation dose ranged from 50.0 Gy to 66.6 Gy, but their treatment volumes were similar to the others. Fifteen (18%) patients received an escalated dose boost >60.0 Gy. The escalated group had a longer median PFS (15.4 vs. 7.9 months, p = 0.01 for log-rank test), and a longer median OS was also longer in the escalation group (33.8 vs. 12.5 months, p <0.001) than the reference group. Following a multivariate analysis, the escalated dose was identified as a significant predictor for good prognosis (PFS: hazard ratio [HR] = 0.48, 95% confidence interval [95%CI]: 0.23–0.98; OS: HR = 0.40, 95%CI: 0.21–0.78). Using the LASSO approach, we found age > 70 (HR = 1.55), diagnosis after 2010 (HR = 1.42), and a larger radiation volume (≥ 250ml; HR = 0.81) were predictors of PFS. The escalated dose (HR = 0.47) and a larger radiation volume (HR = 0.76) were identified as predictors for better OS. Following detailed statistical analysis, a moderate radiation dose escalation (> 60 Gy) was found as an independent factor affecting OS in GBM patients. In conclusion, a moderate radiation dose escalation (> 60 Gy) was an independent predictor for longer OS in GBM patients. However, prospective studies including more patients with more information, such as molecular markers and completeness of resection, are needed to confirm our findings.
AB - Glioblastoma (GBM) has the highest fatality rate among primary malignant brain tumors and typically tends to recur locally just adjacent to the original tumor site following surgical resection and adjuvant radiotherapy. We conducted a study to evaluate the survival outcomes between a standard dose (≤ 60 Gy) and moderate radiation dose escalation (>60 Gy), and to identify prognostic factors for GBM. We retrospectively reviewed the medical records of primary GBM patients diagnosed between 2005 and 2016 in two referral hospitals in Taiwan. They were identified from the cancer registry database and followed up from the date of diagnosis to October 2018. The progression-free survival (PFS) and overall survival (OS) were compared between the two dose groups, and independent factors for survival were analyzed through Cox proportional hazard model. We also affirmed the results using Cox regression with least absolute shrinkage and selection operator (LASSO) approach. From our cancer registry database, 142 GBM patients were identified, and 84 of them fit the inclusion criteria. Of the 84 patients, 52 (62%) were males. The radiation dose ranged from 50.0 Gy to 66.6 Gy, but their treatment volumes were similar to the others. Fifteen (18%) patients received an escalated dose boost >60.0 Gy. The escalated group had a longer median PFS (15.4 vs. 7.9 months, p = 0.01 for log-rank test), and a longer median OS was also longer in the escalation group (33.8 vs. 12.5 months, p <0.001) than the reference group. Following a multivariate analysis, the escalated dose was identified as a significant predictor for good prognosis (PFS: hazard ratio [HR] = 0.48, 95% confidence interval [95%CI]: 0.23–0.98; OS: HR = 0.40, 95%CI: 0.21–0.78). Using the LASSO approach, we found age > 70 (HR = 1.55), diagnosis after 2010 (HR = 1.42), and a larger radiation volume (≥ 250ml; HR = 0.81) were predictors of PFS. The escalated dose (HR = 0.47) and a larger radiation volume (HR = 0.76) were identified as predictors for better OS. Following detailed statistical analysis, a moderate radiation dose escalation (> 60 Gy) was found as an independent factor affecting OS in GBM patients. In conclusion, a moderate radiation dose escalation (> 60 Gy) was an independent predictor for longer OS in GBM patients. However, prospective studies including more patients with more information, such as molecular markers and completeness of resection, are needed to confirm our findings.
UR - http://www.scopus.com/inward/record.url?scp=85084785786&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084785786&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0233188
DO - 10.1371/journal.pone.0233188
M3 - Article
C2 - 32413077
AN - SCOPUS:85084785786
SN - 1932-6203
VL - 15
JO - PloS one
JF - PloS one
IS - 5
M1 - e0233188
ER -